Skip to content. | Skip to navigation

Personal tools

Navigation

You are here: Home

Search results

34 items matching your search terms.
Filter the results.
Item type









































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Troff document (with manpage macros)Applying Benefit-Cost Analysis to Air Pollution Control in the Indian Power Sector
Air pollution is a persistent and well-established public health problem in India: emissions from coal-fired power plants have been associated with over 80,000 premature deaths in 2015. Premature deaths could rise by four to five times this number by 2050 without additional pollution controls. We site a model 500 MW coal-fired electricity generating unit at eight locations in India and examine the benefits and costs of retrofitting the plant with a flue-gas desulfurization unit to reduce sulfur dioxide emissions. We quantify the mortality benefits associated with the reduction in sulfates (fine particles) and value these benefits using estimates of the value per statistical life transferred to India from high income countries. The net benefits of scrubbing vary widely by location, reflecting differences in the size of the exposed population. They are highest at locations in the densely populated north of India, which are also among the poorest states in the country.
Located in MPRC People / Maureen Cropper, Ph.D. / Maureen Cropper Publications
Bhargava on population growth and environmental impact
"Unwanted fertility," especially in rural regions, should be top priority
Located in News
Article Reference Troff document (with manpage macros)Associations between alteration in plant phenology and hay fever prevalence among US adults: Implication for changing climate.
Plant phenology (e.g. timing of spring green-up, flowering) is among the most sensitive indicator of ecological response to ongoing climate variability and change. While previous studies have documented changes in the timing of spring green-up and flowering across different parts of the world, empirical evidence regarding how such ongoing ecological changes impact allergic disease burden at population level is lacking. Because earlier spring green-up may increase season length for tree pollen, we hypothesized that early onset of spring (negative anomaly in start of season (SOS)) will be associated with increased hay fever burden. To test this, we first calculated a median cardinal date for SOS for each county within the contiguous US for the years 2001-2013 using phenology data from the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS). We categorized yearly deviations in SOS for each county from their respective long-term averages as: very early (>3 wks early), early (1-3 wks early), average (within 1 wk), late (1-3 wks late) and very late (> 3 wks late). We linked these data to 2002-2013 National Health Interview Survey data, and investigated the association between changes in SOS and hay fever prevalence using logistic regression. We observed that adults living in counties with a very early onset of SOS had a 14% higher odds of hay fever compared to the reference group, i.e. those living in counties where onset of spring was within the normal range (Odds Ratios (OR): 1.14. 95% Confidence Interval (CI): 1.03-1.27). Likewise, adults living in counties with very late onset of SOS had a 18% higher odds hay fever compared to the reference group (OR: 1.18, CI: 1.05-1.32). Our data provides the first-ever national scale assessment of the impact of changing plant phenology-linked to ongoing climate variability and change-on hay fever prevalence. Our findings are likely tied to changes in pollen dynamics, i.e early onset of spring increases the duration of exposure to tree pollen, while very late onset of spring increases the propensity of exposure because of simultaneous blooming.
Located in MPRC People / Amir Sapkota, Ph.D. / Amir Sapkota Publications
Article Reference Troff document (with manpage macros)Enhancing socio-ecological resilience in coastal regions through collaborative science, knowledge exchange and social networks: a case study of the Deal Island Peninsula, USA
Collaborative science brings together diverse stakeholders to share knowledge and form networks that in turn can be foundational to policies and practices to increase socio-ecological resilience. In this article, we present results from a collaborative science project that employed collaborative learning methods to develop a network of local, regional, state and academic stakeholders. These stakeholders had little social interaction prior to the project and represented a diversity of views, positions and responsibilities. They shared in common a concern for the effects of climate change on a coastal socio-ecological system and the desire to reduce vulnerabilities and enhance resilience. Through ethnographic and survey methods, we found that collaborative science and learning promoted the exchange of cultural and environmental knowledge and expertise among individuals who previously had no sustained interaction. Stakeholders perceived these exchanges as worthwhile in that they allowed individuals to express viewpoints and share knowledge and expertise, which was seen to have the potential to increase socio-ecological resilience. Our results suggest that social networks can emerge from collaborative science and learning projects and can become formally organized and help foster opportunities to enhance socio-ecological resilience.
Located in MPRC People / Michael Paolisso, Ph.D. / Michael Paolisso Publications
Article Reference Troff document (with manpage macros)Using Google Street View to examine associations between built environment characteristics and U.S. health outcomes
Neighborhood attributes have been shown to influence health, but advances in neighborhood research has been constrained by the lack of neighborhood data for many geographical areas and few neighborhood studies examine features of nonmetropolitan locations. We leveraged a massive source of Google Street View (GSV) images and computer vision to automatically characterize national neighborhood built environments. Using road network data and Google Street View API, from December 15, 2017-May 14, 2018 we retrieved over 16 million GSV images of street intersections across the United States. Computer vision was applied to label each image. We implemented regression models to estimate associations between built environments and county  health outcomes , controlling for county-level demographics, economics, and  population density . At the county level, greater presence of highways was related to lower chronic diseases and  premature mortality . Areas characterized by street view images as ‘rural’ (having limited infrastructure) had higher obesity,  diabetes , fair/poor self-rated health, premature mortality, physical distress, physical inactivity and teen birth rates but lower rates of excessive drinking. Analyses at the  census  tract level for 500 cities revealed similar adverse associations as was seen at the county level for neighborhood indicators of less urban development. Possible mechanisms include the greater abundance of services and facilities found in more developed areas with roads, enabling access to places and resources for promoting health. GSV images represents an underutilized resource for building national data on neighborhoods and examining the influence of built environments on community health outcomes across the United States.
Located in MPRC People / Quynh Nguyen, Ph.D., M.S.P.H. / Quynh Nguyen Publications
Article Reference Troff document (with manpage macros)Pharmaceuticals, herbicides, and disinfectants in agricultural water sources
Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.
Located in MPRC People / Amir Sapkota, Ph.D. / Amir Sapkota Publications
Hubacek, Feng, and Yu Explore the Impact of Globalization and Trade on the Environment
The consequences of affluence: Consumption of large amounts of material goods places an unfair environmental burden on less developed areas
Located in News
Whose responsibility are global carbon emissions?
New map of carbon emissions illustrates the global effects of imports and exports
Located in News
Paolisso moderates panel on the challenges faced by the Maryland crab industry
More effort needed to promote true Maryland crab at local restaurants and retailers
Located in News
Hubacek sees recession as key driver in reducing U.S. carbon emissions
Refutes the impact of policy changes on lowering levels of carbon dioxide
Located in News