-
A Conversation with Maureen Cropper
-
This article presents an interview with environmental economist Maureen L. Cropper. Maureen completed her Ph.D. at Cornell University and subsequently held positions at the University of California, Riverside, and the University of Southern California. At Riverside, she moved from monetary economics to environmental economics. She then landed at the University of Maryland, where she is a still a professor. She has taken on leadership roles in numerous institutional settings, including the US National Academy of Sciences and the US Environmental Protection Agency (EPA) Science Advisory Board. Her contributions to environmental economics have been groundbreaking and extensive. Together with many collaborators—including former students and colleagues at the University of Maryland, World Bank, EPA, and Resources for the Future—Maureen has produced a body of work that spans theory, methods, and empirical applied economics. Her work covers the environment, energy, climate change, and transportation in both the United States and developing countries.
Located in
MPRC People
/
Maureen Cropper, Ph.D.
/
Maureen Cropper Publications
-
Antibiotic and herbicide concentrations in household greywater reuse systems and pond water used for food crop irrigation: West Bank, Palestinian Territories
-
Greywater is increasingly treated and reused for agricultural irrigation in off-grid communities in the Middle East and other water scarce regions of the world. However, there is a dearth of data regarding levels of antibiotics and herbicides in off-grid greywater treatment systems. To address this knowledge gap, we evaluated levels of these contaminants in two types of greywater treatment systems on four farms in the West Bank, Palestinian Territories. Samples of household greywater (influent, n = 23), treated greywater effluent intended for agricultural irrigation (n = 23) and pumped groundwater held in irrigation water ponds (n = 12) were collected from October 2017 to June 2018. Samples were analyzed using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) for the following antibiotics and herbicides: alachlor, ampicillin, atrazine, azithromycin, ciprofloxacin, erythromycin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, tetracycline, triflualin, and vancomycin. All tested antibiotics and herbicides were detected in greywater influent samples at concentrations ranging from 1.3 to 1592.9 ng/L and 3.1–22.4 ng/L, respectively. When comparing influent to effluent concentrations, removal was observed for azithromycin, alachlor, linezolid, oxacillin, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, and vancomycin. Removal was not observed for atrazine, ciprofloxacin, erythromycin, oxolinic acid, tetracycline, and trifluralin. Pond water also contained the majority of tested contaminants, but at generally lower concentrations. To our knowledge, this is the first description of an extensive array of antibiotics and herbicides detected in household greywater from off-grid treatment systems.
Located in
MPRC People
/
Amir Sapkota, Ph.D.
/
Amir Sapkota Publications
-
Applying Benefit-Cost Analysis to Air Pollution Control in the Indian Power Sector
-
Air pollution is a persistent and well-established public health problem in India: emissions from coal-fired power plants have been associated with over 80,000 premature deaths in 2015. Premature deaths could rise by four to five times this number by 2050 without additional pollution controls. We site a model 500 MW coal-fired electricity generating unit at eight locations in India and examine the benefits and costs of retrofitting the plant with a flue-gas desulfurization unit to reduce sulfur dioxide emissions. We quantify the mortality benefits associated with the reduction in sulfates (fine particles) and value these benefits using estimates of the value per statistical life transferred to India from high income countries. The net benefits of scrubbing vary widely by location, reflecting differences in the size of the exposed population. They are highest at locations in the densely populated north of India, which are also among the poorest states in the country.
Located in
MPRC People
/
Maureen Cropper, Ph.D.
/
Maureen Cropper Publications
-
Associations between alteration in plant phenology and hay fever prevalence among US adults: Implication for changing climate.
-
Plant phenology (e.g. timing of spring green-up, flowering) is among the most sensitive indicator of ecological response to ongoing climate variability and change. While previous studies have documented changes in the timing of spring green-up and flowering across different parts of the world, empirical evidence regarding how such ongoing ecological changes impact allergic disease burden at population level is lacking. Because earlier spring green-up may increase season length for tree pollen, we hypothesized that early onset of spring (negative anomaly in start of season (SOS)) will be associated with increased hay fever burden. To test this, we first calculated a median cardinal date for SOS for each county within the contiguous US for the years 2001-2013 using phenology data from the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS). We categorized yearly deviations in SOS for each county from their respective long-term averages as: very early (>3 wks early), early (1-3 wks early), average (within 1 wk), late (1-3 wks late) and very late (> 3 wks late). We linked these data to 2002-2013 National Health Interview Survey data, and investigated the association between changes in SOS and hay fever prevalence using logistic regression. We observed that adults living in counties with a very early onset of SOS had a 14% higher odds of hay fever compared to the reference group, i.e. those living in counties where onset of spring was within the normal range (Odds Ratios (OR): 1.14. 95% Confidence Interval (CI): 1.03-1.27). Likewise, adults living in counties with very late onset of SOS had a 18% higher odds hay fever compared to the reference group (OR: 1.18, CI: 1.05-1.32). Our data provides the first-ever national scale assessment of the impact of changing plant phenology-linked to ongoing climate variability and change-on hay fever prevalence. Our findings are likely tied to changes in pollen dynamics, i.e early onset of spring increases the duration of exposure to tree pollen, while very late onset of spring increases the propensity of exposure because of simultaneous blooming.
Located in
MPRC People
/
Amir Sapkota, Ph.D.
/
Amir Sapkota Publications
-
Bhargava examines population impact on groundwater in India
-
Absence of healthcare and family planning services crucial
Located in
News
-
Bhargava on population growth and environmental impact
-
"Unwanted fertility," especially in rural regions, should be top priority
Located in
News
-
Brian Thiede, The Pennsylvania State University
-
It’s Raining Babies? Flooding and Fertility Choices in Bangladesh
Located in
Coming Up
-
Case-crossover analysis of short-term particulate matter exposures and stroke in the health professionals follow-up study
-
BACKGROUND: Stroke is a leading cause of morbidity and mortality in the United States. Associations between short-term exposures to particulate matter (PM) air pollution and stroke are inconsistent. Many prior studies have used administrative and hospitalization databases where misclassification of the type and timing of the stroke event may be problematic. METHODS: In this case-crossover study, we used a nationwide kriging model to examine short-term ambient exposure to PM10 and PM2.5 and risk of ischemic and hemorrhagic stroke among men enrolled in the Health Professionals Follow-up Study. Conditional logistic regression models were used to obtain estimates of odds ratios (OR) and 95% confidence intervals (CI) associated with an interquartile range (IQR) increase in PM2.5 or PM10. Lag periods up to 3 days prior to the stroke event were considered in addition to a 4-day average. Stratified models were used to examine effect modification by patient characteristics. RESULTS: Of the 727 strokes that occurred between 1999 and 2010, 539 were ischemic and 122 were hemorrhagic. We observed positive statistically significant associations between PM10 and ischemic stroke (ORlag0-3 = 1.26; 95% CI: 1.03-1.55 per IQR increase [14.46 μg/m3]), and associations were elevated for nonsmokers, aspirin nonusers, and those without a history of high cholesterol. However, we observed no evidence of a positive association between short-term exposure to PM and hemorrhagic stroke or between PM2.5 and ischemic stroke in this cohort. CONCLUSIONS: Our study provides evidence that ambient PM10 may be associated with higher risk of ischemic stroke and highlights that ischemic and hemorrhagic strokes are heterogeneous outcomes that should be treated as such in analyses related to air pollution.
Located in
MPRC People
/
Amir Sapkota, Ph.D.
/
Amir Sapkota Publications
-
Case-crossover analysis of short-term particulate matter exposures and stroke in the health professionals follow-up study
-
BACKGROUND: Stroke is a leading cause of morbidity and mortality in the United States. Associations between short-term exposures to particulate matter (PM) air pollution and stroke are inconsistent. Many prior studies have used administrative and hospitalization databases where misclassification of the type and timing of the stroke event may be problematic. METHODS: In this case-crossover study, we used a nationwide kriging model to examine short-term ambient exposure to PM10 and PM2.5 and risk of ischemic and hemorrhagic stroke among men enrolled in the Health Professionals Follow-up Study. Conditional logistic regression models were used to obtain estimates of odds ratios (OR) and 95% confidence intervals (CI) associated with an interquartile range (IQR) increase in PM2.5 or PM10. Lag periods up to 3 days prior to the stroke event were considered in addition to a 4-day average. Stratified models were used to examine effect modification by patient characteristics. RESULTS: Of the 727 strokes that occurred between 1999 and 2010, 539 were ischemic and 122 were hemorrhagic. We observed positive statistically significant associations between PM10 and ischemic stroke (ORlag0-3 = 1.26; 95% CI: 1.03-1.55 per IQR increase [14.46 μg/m3]), and associations were elevated for nonsmokers, aspirin nonusers, and those without a history of high cholesterol. However, we observed no evidence of a positive association between short-term exposure to PM and hemorrhagic stroke or between PM2.5 and ischemic stroke in this cohort. CONCLUSIONS: Our study provides evidence that ambient PM10 may be associated with higher risk of ischemic stroke and highlights that ischemic and hemorrhagic strokes are heterogeneous outcomes that should be treated as such in analyses related to air pollution.
Located in
MPRC People
/
Robin Puett, Ph.D.
/
Robin Puett Publications
-
Case-crossover analysis of short-term particulate matter exposures and stroke in the health professionals follow-up study
-
BACKGROUND: Stroke is a leading cause of morbidity and mortality in the United States. Associations between short-term exposures to particulate matter (PM) air pollution and stroke are inconsistent. Many prior studies have used administrative and hospitalization databases where misclassification of the type and timing of the stroke event may be problematic. METHODS: In this case-crossover study, we used a nationwide kriging model to examine short-term ambient exposure to PM10 and PM2.5 and risk of ischemic and hemorrhagic stroke among men enrolled in the Health Professionals Follow-up Study. Conditional logistic regression models were used to obtain estimates of odds ratios (OR) and 95% confidence intervals (CI) associated with an interquartile range (IQR) increase in PM2.5 or PM10. Lag periods up to 3 days prior to the stroke event were considered in addition to a 4-day average. Stratified models were used to examine effect modification by patient characteristics. RESULTS: Of the 727 strokes that occurred between 1999 and 2010, 539 were ischemic and 122 were hemorrhagic. We observed positive statistically significant associations between PM10 and ischemic stroke (ORlag0-3 = 1.26; 95% CI: 1.03-1.55 per IQR increase [14.46 μg/m3]), and associations were elevated for nonsmokers, aspirin nonusers, and those without a history of high cholesterol. However, we observed no evidence of a positive association between short-term exposure to PM and hemorrhagic stroke or between PM2.5 and ischemic stroke in this cohort. CONCLUSIONS: Our study provides evidence that ambient PM10 may be associated with higher risk of ischemic stroke and highlights that ischemic and hemorrhagic strokes are heterogeneous outcomes that should be treated as such in analyses related to air pollution.
Located in
Retired Persons
/
Olivia Denise Carter-Pokras, Ph.D.
/
Olivia Denise Carter-Pokras Publications