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Abstract

In many randomized trials, subjects enter the sample sequentially. Because the
covariates for all units are not known in advance, standard methods of stratification
do not apply. We describe and assess the method of DA-optimal sequential allocation
(Atkinson, 1982) for balancing stratification covariates across treatment arms. We
provide simulation evidence that the method can provide substantial improvements
in precision over commonly-employed alternatives. We also describe our experience
implementing the method in a field trial of a clean water and handwashing intervention
in Dhaka, Bangladesh, the first time the method has been used. We provide advice
and software for future researchers.
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Introduction

Randomized-controlled trials (RCTs) are an increasingly important tool for policy evalua-

tion and estimation of economic parameters. However, they are expensive, and efficient use

of limited resources (funding, inputs from implementation partners, and researchers’ time)

requires that they be designed carefully. In an important contribution, Bruhn and McKen-

zie (2009) reviewed stratification methods that were common in economics RCTs at the

time, and showed that large gains in precision were available by adopting more sophisticated

stratification methods from the clinical trials literature. These stratification methods require

researchers to obtain stratification covariates from all subjects prior to randomization. How-

ever, this is not always feasible. In clinical trials, subjects are often allocated to treatment

as they arrive. In field trials, operational constraints may prevent defining and surveying

the full sample frame in advance. In such situations, subjects must be assigned sequentially,

with the researcher only learning the value of the stratification variables for that subject’s

at the time of enrollment and assignment.1

In this paper, we propose the use of DA-optimal sequential allocation (Atkinson, 1982) to

improve balance and power when subjects are enrolled sequentially. The DA-optimal method

minimizes imbalance given the constraint of not knowing covariate values in advance. We

describe the method and its properties, and provide an algorithm for its implementation.

We conduct a set of simulations, based on Bruhn and McKenzie (2009), and show that the

DA-optimal method offers clear benefits relative to commonly-used sequential alternatives.

In fact, surprisingly, optimal sequential designs are almost as well-balanced as stratifications

performed with full knowledge of covariates in advance. In spite of these practical advantages,

the method had not, to our knowledge and according to three survey articles, ever been

employed in the field.2 We describe our experience implementing the method in a water
1Examples of sequential randomization in economics include Beaman and Magruder (2012), which ran-

domized without stratification, and Bronchetti et al. (2013), which stratified using the block randomization
method we describe in Section 4.2.

2See McEntegart (2003), Table 1 in Taves (2010), and Ciolino et al. (2011). Confirmed by personal
communication with J. Cicolino, Northwestern University, January 17, 2014.
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treatment and hygiene intervention in Dhaka, Bangladesh (Guiteras et al., 2014), and offer

practical advice on its implementation under field conditions. Implementation was feasible

with standard software (Stata), and produced an allocation that was well-balanced both on

the stratification variables chosen ex ante and, ex post, on other important variables that

were not included in the stratification.

1 Theory

Our exposition follows Atkinson (2002), with some changes in notation. First, we lay out the

model and notation. Second, we develop the theory for the traditional situation of a fixed

population of N subjects, for whom covariates X have been collected in advance. Third,

we introduce sequential designs using a simplified case where the researcher is concerned

with the precision of all estimated parameters, both treatment effects and nuisance param-

eters (coefficients on stratification variables). Finally, we adapt the sequential design to the

standard situation where only precisely estimated treatment effects are of interest.

1.1 Model and Notation

Suppose the researcher is conducting an individual-level trial with J treatments, including

the control treatment. We first consider a linear model with homogeneous treatment effects

and i.i.d. errors. In Section 2, we discuss extensions, inclusing heteroscedasticity, nonlinear

models, and cluster designs. The model for unit i is

yi = d′iα + x′iβ + εi = w′iθ + εi, (1)

where di is a J × 1 vector of indicator variables assigning unit i to a single treatment (i.e.,

exactly one element of di is equal to one), xi is a K × 1 vector of covariates, and εi is an

error term. Without loss of generality, we order the treatments with the control condition

first. Let di (j) indicate assignment to the jth treatment; that is, di (1) = (1 0 · · · 0)′,
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di (2) = (0 1 0 · · · 0)′, etc. We are interested in estimating contrasts between the elements of

α; that is, α1−α2, α1−α3, etc. The control group mean is a nuisance parameter,3 as are the

K elements of β (the coefficients on the covariates), so we have K + 1 nuisance parameters

and J − 1 parameters of interest.4

1.2 Optimal designs with baseline covariates

First, consider a population of N subjects, for whom the researcher has obtained baseline

covariates X prior to randomization. The population regression model is given by

E [Y ] = Dα +Xβ = Wθ, (2)

where D is the N × J matrix assigning all subjects to treatment (i.e., D =
(
d1 · · · dn

)′
).

X is the N ×K matrix of covariates, and α and β are as before. Given the covariates X,

our goal is to choose D to minimize the variance of our estimated treatment effect. As a

simple example, with one treatment plus a control condition, J = 2, we are interested in the

contrast α1 − α2 and wish to minimize V [α̂1 − α̂2].

A useful matrix to create contrasts is

L′(J−1)×J =



1 −1 0 0

1 0 −1 0

1 0 −1


.

3We are not interested in α1 per se, but a precise estimate α̂1 is necessary to estimate contrasts precisely.
4A more familiar setup for economics readers would include an intercept term as a covariate, so α∼1

would have J − 1 elements (corresponding to the J − 1 treatment conditions excluding the control) and the
augmented covariate vector (1, x′)′ would have K + 1 elements including the intercept. This turns out to be
less convenient for some of the matrix algebra below.
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Now we can create a vector of contrasts by premultiplying α by L′:

L′α =


α1 − α2

...

α1 − αJ

 .

To annihiliate the nuisance parameters, we augment L′ with a (J − 1) × K matrix of

zeros, and define

A′ =
[
L′ 0

]
.

The variance of α̂ is is proportional to square root of the determinant of the generalized

variance:5 ∣∣∣A′ (W ′W )−1
A
∣∣∣ =

∣∣∣∣L′ {D′D −D′X (X ′X)−1
X ′D

}−1
L
∣∣∣∣ . (3)

This quantity is minimized when D′X = 0; that is, when the treatment assignment is

orthogonal to the covariates, which is to say the treatments are balanced across the covariates.

When D′X = 0, the generalized variance simplifies, and the determinant is

∣∣∣A′ (W ′W )−1
A
∣∣∣ =

∣∣∣L′ (D′D)−1
L
∣∣∣ = JJ/NJ−1

This minimum possible value is the standard against we any other treatment assignment D.

Note that this value is increasing in J and decreasing in N , which matches our intuition that

the variance will increase with the number of treatments and decrease with the number of

observations.

The relative efficiency of a design D is the ratio of the determinant of the generalized

5Recall that W =
[
D X

]
, so W ′W =

[
D′

X ′

] [
D X

]
=
[
D′D D′X
X ′D X ′X

]
. Then use results on inverses of

partitioned matrices and use the zero block of the matrix A to zero out several terms.
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variance to this minimal value:

E =
{

JJ/NJ−1

A′ (W ′W )−1 A

}1/(J−1)

,

where 1/ (J − 1) is a scale factor. A smaller denominator
∣∣∣A′ (W ′W )−1 A

∣∣∣ leads to higher E ,

implying a more efficient design. Note that E = 1 for an exactly balanced design. A useful

representation is the loss

L = N (1− E) ,

which is expressed as the effective loss of observations relative to an optimal design. That

is, a non-optimal design D with N units is as precise as an optimal design with N (1− E)

fewer units. For an exactly balanced design, L = 0.

Although not the focus of this paper, this framework can be used for near-optimal ran-

domization in cases where a researcher can collect baseline data prior to randomization.

Specifically, create a large number S of random allocations
{
D1, . . . , Ds, . . . , DS

}
and choose

the allocationDs with lowest associated loss.6 Kasy (2013) considers a more general Bayesian

framework, and provides a search algorithm to find an optimal allocation.7

1.3 Sequential D-optimality

To extend to sequential randomized trials, we first consider the simple case where all elements

of θ = (α′, β′)′ are of interest. Our goal is to minimize the variance of θ̂. The variance of θ̂ is

proportional to the inverse of the design matrix (W ′W )−1, so we want to minimize (W ′W )−1

or, equivalently, maximize |W ′W |, which will give us a D-optimum design.

Suppose the first n units have been allocated, with the resulting design given by Wn =
6To conduct randomization inference, rather than choose the allocation with minimum L, the researcher

can instead specify an acceptable maximum L, retain R+ 1 draws with loss less than L, select one of these
R+1 at random, and retain the remaining R for randomization inference. Code is available from the authors
on request.

7This optimal allocation is unique if any element of x is continuous, and may be unique (in finite samples)
even for discrete x with a large number of treatments and covariate cells.
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[
Dn Xn

]
. Suppose that unit n+ 1 arrives, with covariate vector xn+1. By the Generalized

Equivalence Theorem of Kiefer and Wolfowitz (1960), maximizing |W ′W | is equivalent to

minimizing the maximum variance of the predicted response, where this maximum is taken

over the space of w. That is, given the current allocation Wn, the variance of ŷ at a point

w = (d′, x′)′ is

V [ŷ (w)] ∝ s (w,Wn) = w′ (W ′
nWn)−1

w, (4)

where s (w,Wn) is the standarized variance at w given the allocationWn. Because minimizing

V
[
θ̂
]
is equivalent to minimizing the maximum variance of the predicted mean, we can restate

our objective as minimizing

sup
w
V (ŷ (w)) .

That is, given the existing design Wn and the covariate values xn+1, the optimal assignment

for unit n+ 1 is

d∗n+1 (xn+1,Wn) = arg min
d

{
sup

w
V (ŷ (w))

}
.

In other words, we want to allocate this unit to the treatment where the variance is greatest.

To accomplish this, for unit n + 1, write the set of possible values for wn+1 as wn+1 (1) =(
d (1)′ , x′n+1

)′
, . . . wn+1 (J) =

(
d (J)′ , x′n+1

)′
, where d (j) denotes allocation to treatment j.

For each wn+1 (j), we calculate

sj = s (wn+1 (j) ,Wn) = wn+1 (j)′ (W ′
nWn)−1

wn+1 (j) . (5)

The best allocation for unit n + 1 is the d (j) with the largest value of sj. In this simplest

case, we mechanically assign person n + 1 to this treatment. The intuition is that the unit

is being assigned to the treatment where it is most needed, which is where the variance is

highest. In Section 2.7, we discuss non-deterministic or “biased coin” assignment.
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1.4 Sequential DA-optimality

The D-optimal procedure in the previous subsection minimizes V
[
θ̂
]
. That is, it maximizes

precision for estimates of both treatment effects and the coefficients on baseline characteris-

tics. However, in most cases our goal is to maximize precision for the estimated treatment

effects. That is, our objective is to minimize V [α̂], and we are not per se interested in

minimizing V
[
β̂
]
. Atkinson calls this problem DA-optimality. The intuition and the basic

procedures are the same, but the formula for the standardized variance sA (wn+1 (j) ,Wn) is

slightly more complicated:

sA (wn+1 (j) ,Wn) = wn+1 (j)′ (W ′
nWn)−1

A
{
A′ (W ′

nWn)−1
A
}−1

A′ (W ′
nWn)−1

wn+1 (j) , (6)

where A′ =
[
L′ 0

]
, as above.

The assignment algorithm follows the logic of Section 1.3. Suppose that n units have

been allocated, and the current matrix of assignments and covariates is Wn =
[
Dn Xn

]
.

When unit n+ 1 arrives with covariates xn+1, check the value of sj = sA (wn+1 (j) ,Wn) for

each possible assignment j. The optimal allocation of unit n+1 is where where sj is greatest.

1.5 Algorithm

The procedure described above cannot be used for the first units, because W ′W is singular

as long as the number of observations, n, is less than the number of incidental parameters, J .

These first units could be assigned randomly, or the W ′W matrix could be made invertible

by adding a small amount of random noise to the diagonal.

Having allocated n units, allocate unit n+ 1 as follows:

1. Subject n+ 1 arrives with xn+1

2. For each treatment j, calculate sA (wn+1 (j) ,Wn) using 6.

3. Assign treatment to the study arm where sA (wn+1 (j) ,Wn) is greatest.
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4. Update Wn to Wn+1.

2 Extensions

2.1 Unequal allocations

The basic exposition assumes that the researcher places equal weight on the precision of each

element of α (that is, on the coefficient of each treatment effect). However, the researcher may

wish to weight these unequally – if, for example, the cost of treatments vary, or if external

constraints require unequal numbers of treated units. To create unequal allocations, inflate

or deflate the corresponding values of sj = sA (wn+1 (j) ,Wn). For example, to overweight

treatment j, premultiply sj by an appropriate weight mj. These weights {mj} can be

calculated analytically in some simple cases, or the researcher can conduct simulations to

tune the weights. See Section 6 for an example.

2.2 Heteroscedasticity

If the variance of the outcome of interest is a function of treatment, equal allocations may be

inefficient because coefficients corresponding to treatments that increase variance will be less

precisely estimated. If the researcher has a strong prior that the variance of the outcome of

interest is likely to be greater under certain treatment conditions, she can allocate more units

to that treatment following the weighting strategy described in the previous subsection.

2.3 Unequal penalties for imbalance

The researcher may wish to emphasize balance in one covariate or set of covariates over

others. Suppose one set of K1 covariates x1 have very strong predictive power for the

outcome variable, while the remaining K2 covariates x2 have some predictive power but less

than x1. The researcher wants to balance against both covariates, but imbalance in x1 will

8



cause greater efficiency loss than imbalance in x2. To assign a greater penalty to imbalance

in x1, note from Equation (3) that efficiency is maximized when D′X is zero, and decreases

as D′X(X ′X)−1 X ′D becomes larger. Partition X into X =
[
X1 X2

]
. Now

D′X (X ′X)−1
X ′D = D′

[
X1 X2

]
(X ′X)−1

[
X1 X2

]′
D (7)

=
[
D′X1 D′X2

]
(X ′X)−1

[
D′X1 D′X2

]′
,

so to penalize imbalance in x1 simply multiply D′X1 – but not D′X2 – by a scalar weightm >

1. The same logic applies in the sequential algorithm: in the standardized variance formula

(6), replace D′nX1n with mD′nX1n.8 Again, simulations can help choose the appropriate

weights.

2.4 Subgroups and Interactions

As described, the algorithm maximizes marginal balance. That is, it minimizes the variance

of the estimates of the treatment effects overall, not for any particular value of the covariates.

To optimize estimates for subgroups, augment the vector containing the covariates of interest,

α, with the relevant interaction coefficients. Similarly, if the interaction of two treatments is

of interest, augment α and d appropriately. See Section 6 for an example.

2.5 Nonlinear models

The algorithm is motivated by linear regression, so the allocation it produces may not be

optimal for nonlinear designs. In particular, for linear regression, the optimal design does

not depend on the value of the unknown parameters, but it does for nonlinear or gener-

alized linear models (Atkinson and Haines, 1996). Therefore, the optimal design, for a
8Note that, as with (3), the middle term A′ (W ′nWn)−1

A of (6) reduces to
L′
{
D′nDn −D′nXn (X ′nXn)−1

X ′nDn

}−1
L , with the loss coming from D′nXn 6= 0. Partitioning as

above, the second term in the inverse becomes
[
D′nX1n D′nX2n

]
(X ′nXn)−1 [D′nX1n D′nX2n

]′, so we
increase the penalty for imbalance in x1 by replacing D′nX1n with mD′nX1n.
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non-sequential or sequential trial, in a nonlinear model requires that the researcher specify

her prior belief distribution about the parameter of interest. While the intuition is similar

(maximizing the log of the determinant of the information matrix), the calculation can be

quite difficult. However, it is difficult to imagine a scenario where balancing to minimize

the variance of OLS estimates would severely worsen the precision of nonlinear estimators.

Therefore, we speculate that such concerns are of second order, and that, while the method

may not produce the optimal design for a nonlinear model, it is likely to produce a good

approximation. In highly specialized situations, there may be some efficiency gains to more

specialized solutions.9

2.6 Time trends

Because the algorithm seeks to maintain balance at each point in the sequence, it is robust to

trends or fluctuations in potential outcomes that occur as sample enrollment proceeds. For

example, neither a geographic pattern to enrollment nor a change in recruitment methods

would cause bias, even if these were correlated with potential outcomes (e.g., moving from

richer to poorer neighborhoods, or making a greater effort to recruit poor subjects).

2.7 Biased coin methods

The DA-optimal method will produce unbiased estimates as long as each unit’s exact place

in the sequence is uncorrelated with potential outcomes. This assumption could be violated

if, for example, an intake nurse in a clincial trial knows the algorithm and current allocation.

The nurse could then manipulate the order in which subjects are processed to ensure that a

particular subject receives a particular treatment.

To reduce the possiblity of gaming, a “biased coin” version of the sequential allocation

algorithm allocates a subject probabilistically, putting highest probability on the study arm
9For an example, see Zocchi and Atkinson (1999), who derive the optimal design to study the relationship

between a discrete treatment (dose of gamma radiation) and a multinomial, ordered outcome (whether
housefly pupae die before opening, die during emergence, or survive past emergence).
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that would reduce the variance of estimated treatment effect, sA (wn+1 (j) ,Wn), the most.

Following the logic of Efron (1971) and of Atkinson (1982) studying a related problem,

suggests this formula for the probability for alllocation to study arm:

π (j) = sA (wn+1 (j) ,Wn)∑
j′ sA (wn+1 (j′) ,Wn) .

Randomization may also be useful for expositional purposes, to explain to subjects that

the process is fair and to users of the research who are used to hearing about “randomized,”

rather than “optimally allocated,” trials.

2.8 Cluster designs

The development above is based on individual-level treatments, but can be adapted for

cluster designs. The first application is to interventions where the treatment is assigned

at a cluster level. In this case, the DA-optimal method applies directly, using cluster-level

covariates.

A second application is when treatments are assigned to individuals, but individuals

belong to clusters and for logistical reasons these clusters are enrolled sequentially. For ex-

ample, consider a study of the demand for water filters among N households in V villages.10

The researcher wishes to vary a sales treatment at the household level. However, villages

are enrolled – and stratification covariates collected – sequentially, so at the time of assign-

ing treatments in village v, the researcher only knows covariates for households in villages

1, . . . , v, and the history of assignments in villages 1, . . . , v−1. This is not a purely sequen-

tial allocation, since the researcher knows the values of the covariates for all households in

village v, and can assign treatments simultaneously within village v. However, the researcher

does not know the value of covariates for households in future villages v+1, . . . V . The tools

of sequential allocation can be usefully applied in this situation. Suppose that the matrix
10This example is inspired by Berry, Fischer, and Guiteras (2015), who, regrettably, were not aware of the

the DA-optimal method at the time of implementation, and used a complicated version of the Block method
described in Section 4.2.
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of assignments and covariates through village v − 1 is Wv−1 = [Dv−1 Xv−1]. The researcher

obtains covariate data for households in village v, resulting in the covariate matrix Xv for all

v villages. The researcher then creates a large number S of random treatment allocations for

village v, resulting in a set of assignment matrices
{
D1

v, . . . , D
s
v, . . . , D

S
v

}
and correspond-

ing design matrices
{
W 1

v , . . . , W
s
v , . . . , W

S
v

}
. For each s, we can calculate the associated

determinant A′ (W s′
v W

s
v )−1 A, where, as in Section 1.2, the matrix A allows us to focus on

the parameters of interest. Since this determinant is proportional to the expected variance

of α̂, we select the allocation that minimizes this determinant.

3 Inference

Confidence intervals can be constructed from the usual regression-based methods, and the

standard covariance matrices can also be used for t-tests of hypotheses. Shao, Yu, and

Zhong (2010) prove that controlling for balancing variables will yield tests of the correct

size. As emphasized by Bruhn and McKenzie (2009), researchers should commit ex-ante to

controlling for the balancing variables, since this increases power on average, but retaining

the option to analyze without controlling for the balancing variables gives the researcher a

degree of freedom that can distort the size of a test.

Randomization inference can be conducted by following the “reasoned basis for inference”

logic of Fisher (1935): because the design assumption is that the precise order of arrival of

units is arbitrary, one can construct counterfactual distributions by reshuffling this order

in which subjects arrive. If the study also uses a biased-coin approach, then one can re-

randomize the biased coin flips. Shao and Yu (2013) also propose a covariate-augmented

bootstrap method and show that it provides valid tests for generalized linear models.
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4 Simulation Methods

Using the four panel datasets and simulation structure of Bruhn and McKenzie (2009),

we compare the DA-optimal method to two sequential methods, simple randomization and

block randomization (permutations within block), which are commonly used in clinical and

other trials (McEntegart, 2003). We describe these methods in greater detail in Section

4.2. For each dataset and each allocation method, we simulate 10,000 randomizations. In

each iteration, the enrollment order is randomized, treatments are assigned according to

the given method, a simulated output variable is created by adding a true treatment effect

(possibly zero) to those assigned treatment, and we obtain an estimated treatment effect

with associated standard errors and p-values.

4.1 Data

We use the four panel datasets used in Bruhn and McKenzie (2009), who provide further

detail on these data. The first dataset covers microenterprises in Sri Lanka and contains

information on firms’ profits, assets and other firm and owner characteristics. The second

dataset is a subsample from the Mexican employment survey (ENE) containing data on

heads of household between 20 and 65 years of age who were first interviewed in the second

quarter of 2002. The third dataset comes from the 1997 and 2000 waves of the Indonesian

Family Life Survey (IFLS) and contains child schooling outcomes as well as household level

data such as weekly expenditure. The final dataset comes from the Learning and Educational

Achievement Project (LEAPS) in Pakistan and includes math and height z-scores as well

as other covariates for children aged 8 to 12 at baseline. From each dataset, we draw sub-

samples of 30, 100 and 300 observations to allow a comparison of the methods over small,

medium and large samples.
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4.2 Allocation Methods

In the simulations, we use three allocation methods: a simple, unstratified randomization;

block randomization (permutations within strata); and the DA-optimal method.

In simple randomization, each subject is randomly assigned to treatment as she arrives,

with each treatment given the desired probability. In our simulations, there are only two

arms (treatment and control), and each is given probability 0.5.

In Block randomization, the researcher creates a separate randomization list for each

stratum (unique combination of balancing covariates). For example, when balancing on 3

binary variables, there are 8 (=23) strata.11 Since the number of subjects who will fall in

each stratum is unknown ex ante, a list should maximize overall balance at each point in the

sequence while keeping predictability of each allocation low. The Block method uses lists

that are sequences of blocks of random but balanced permutations of the treatments. The

size of the blocks can be as low as the number of treatments — 2 if there is one treatment and

a control (e.g. (T,C), (C,T), (C,T), (T,C) . . . ) — or higher to reduce predictability (e.g. 2

treatments, block size 4: (T,C,C,T), (C,T,C,T), (T,C,T,C), (C,T,T,C), . . . ). The size of

the blocks may also be varied randomly to minimize predictability. In our simulations, we

abstract from concerns about allocation manipulation and set the block size equal to the

number of treatments, which achieves the greatest balance and therefore provides the most

conservative test of the DA-optimal method.

Our third method is the DA-optimal method, for which we follow the algorithm laid out

in section 1.5. For the first J units, we added random noise to the diagonal of the matrix.

We did not use the biased coin variant.

For the Block and DA-optimal methods, we use the same balancing variables as Bruhn
11When using the the Block method, the researcher must discretize continuous variables, e.g. above and

below the median. However, the median (or other sensible cut point) may not be known in advance. One
advantage of the DA-optimal method is that it allows for continuous covariates. In our application, we
included the number of households in each compound as a balancing variable. Although we did not know
the distribution of this variable in advance, the DA-optimal method produced an allocation that was well-
balanced both on the mean of the continuous variable and on the proportion above / below the median.
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and McKenzie (2009). The outcome at baseline is always included. Other variables are

chosen based on their likelihood of being good predictors of the follow-up outcome.

5 Simulation Results

5.1 Balance at Baseline

We first examine balance on the baseline outcome variable. After each randomization we

regress the baseline outcome on the assigned treatment. Since the treatment is fictitious,

the distribution of these coefficients gives an idea of the potential for imbalance under each

method. Figure 1 presents the distributions for the three methods over a number of datasets

at all three sample sizes. Table 1 gives the average coefficient, the 95th percentile of the

distribution, and the proportion of iterations with a p-value less than 0.1 for each dataset

and method, for the sample size 100.

Panel A of Table 1 shows that all methods, even simple randomization, achieve balance on

average at baseline since all have means close to zero. However Panel B shows the methods

that balance over the baseline outcome do significantly better than simple randomization at

avoiding extremes and that the DA-optimal method clearly dominates the Block method in

this respect. The ninety-fifth percentile of the distribution drops from around 0.4 for simple

randomization to around 0.2 for the Block method and to below 0.08 for the DA-optimal

method. This point is well illustrated by the kernel density plots in figure 1 where we see

the the distribution of coefficients for DA-optimal as a sharp spike around zero compared to

the more rounded bell curves for Block and simple randomization.

We also see that including additional balancing variables in either method reduces balance

on existing balancing variables, although only slightly.

Table 1 also shows how the methods may affect balance on “unobservables.” Of course, it

is not possible in practice to assess balance on true unobservables, but in a simulation we can

mimic unobservables with observed variables we expect to be correlated with the outcome of
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interest, but which we intentionally exclude from the set of stratification variables. Standard

stratification methods should not, on average, lead to more imbalance on unobservables than

unstratified randomization (Aickin, 2001). Here, we obtain a similar result for the sequential

balancing methods, which do no worse than simple randomization.

5.2 Balance at Follow-up

We now address balance on the outcome of interest at follow-up. Just as for the baseline

case, we have regressed the follow-up outcome on the fictitious treatment variable in each

iteration. Figure 1 shows the distribution of coefficients. Tables 2 and 3 present the same

statistics as Table 1 but for the follow-up case, for sample sizes 30 and 300 and with the

addition of Panel D. In all cases, the p-values are based on regressions that take into account

the method of randomization: for Block randomization, stratum dummies are added to the

regression, for DA-optimal, the balancing covariates are included as controls.

Panel A from tables 2 and 3 show that balance on the follow-up outcome is achieved on

average by all methods. We expect to see the likelihood of extreme imbalance reduced only

when the balancing covariates used are good predictors of the outcome. Bruhn and McKenzie

note that covariates in the LEAPS datasets (specifically, lagged values for both outcomes,

math and height z-scores) have high predictive power, with 43% or more of the variation

in the outcome explained by the balancing covariates. The Sri Lankan microenterprise

data and the IFLS schooling data fall at the other end of the spectrum with 17% or less

explained. The results in panel B from table 2 confirm this hypothesis. For both of the

LEAPS outcomes, we see substantial improvements in balance when using Block or DA-

optimal methods compared to simple randomization. However, for outcomes where balancing

covariates have low predictive power, we see no improvement, and perhaps even slightly worse

balance in the case of the Mexican employment data. DA-optimal does better than Block

more often than not, but the advantage is not very large.

Additionally, as with Bruhn and McKenzie (2009), we see that the benefit of using
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covariates to balance attenuates as the sample size increases (compare Panel B of Table

2 to Table 3). We also confirm that test statistics are incorrect when not controlling for the

method of randomization (see Panel C vs Panel D in Tables 2 and 3).

5.3 Power to detect a given treatment effect

Lastly, we turn to perhaps the most important question: how do the methods compare in

terms of power for detecting a given treatment effect? To answer this question, we add a

constant treatment effect to the output of all subjects assigned to treatment,12 and then

regress the modified outcome on treatment. Tables 4 and 5 presents the proportion of

estimated treatment effects that are significant at the 0.10 level, with and without proper

controls for the method of randomization. As with Bruhn and McKenzie (2009), we see an

increase in power in nearly all cases when proper controls for the method of randomization

are included.

In Table 4, Panel B we see the DA-optimal method improves power for all six datasets.

The size of the improvements are modest with the given balancing variables, but improvement

is consistent. The Block method on the other hand decreases power as often as it increases

it. Table 5 shows that all methods, including simple randomization are indistinguishable as

N grows large.

6 Experience from the field

We implemented the DA-optimal method in a randomized trial of safe water and handwash-

ing interventions among 435 compounds in slums of Dhaka, Bangladesh. To our knowledge,

this study was the first to apply the DA-optimal method. Details of the study and results

are provided in Guiteras et al. (2014).

All participants received behavior change communication and a free trial of a “chlorine
12See the notes to Tables 4 and 5 for the values of these imposed treatment effects.
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dispenser,” a compound-level device for treating water with chlorine (Evidence Action, 2014).

At the end of the free trial, we measured the compound’s willingness to pay for a one-year

subscription for use and maintenance of the chlorine dispenser.. We had 8 study arms in a

2-by-2-by-2 interaction of

• Behavior change message was a standard health message vs. messages based on disgust

and shame;

• Included handwashing messages and soapy water bottle vs. not included; and

• Measured collective wilingness to pay for the compound vs. individual household

willingness to pay.

Because we were especially interested in the effect of the disgust and shame treatment on

handwashing in the handwashing arm, we gave handwashing 2/3 weight. The other treat-

ments were equally weighted. Our balancing variables were the number of households in

the compound and an indicator for the presence of gas burners connected to the municipal

supply.

To implement the allocation, the enumerator collected baseline data on compound size

and gas status from each eligible compound and transmitted these data to the field office,

either by SMS or a phone call. The field supervisor then entered the covariates into a Stata

program that assigned the compound to a treatment cell using the DA-optimal method.

Manipulation was not likely in our context, because the enumerators could not plau-

sibly have anticipated which assignment any given compound would receive. First, the

enumerators collected several baseline variables, but did not know which would be used for

stratification. Second, they did not have access to the in-progress list of compounds, co-

variates and assignments. Third, they were unfamiliar with the DA-optimal algorithm. If

manipulation is a concern, the biased-coin variant (Section 2.7) may be appealing.

The resulting sample was well-balanced on both the balancing variables and other plausi-

bly important covariates that were not explicitly included in the randomization. See Tables

18



A1-A4 of Guiteras et al. (2014) for detailed results. Compounds were well-balanced both on

the mean of the (continuous) number of households in the compound and on an indicator

for whether the compound had the median (8) or fewer number of households, even though

we did not know in advance what the median number would be.

These results were obtained in spite of choosing one balancing variable poorly. In our

piloting, we observed that water treatment practices varied importantly by whether the

compound had a connection to the municipal gas supply. A gas connection also appeared

to be a useful proxy for better overall socio-economic status. However, gas coverage in our

study area turned out to be much higher than in the pilot area (even though the pilot area

was nearby and similar in many other respects), and in fact was nearly universal (> 95%).

Despite this unhelpful balancing variable, the algorithm produced a sample that was well-

balanced on the other balancing variable and on our main SES variable, household monthly

income. We view the robustness of the method as encouraging.

7 Discussion and Conclusion

The DA-optimal method is a useful tool for improving balance in situations when a full

ex-ante stratification is not feasible. The benefits are most pronounced when sample sizes

are modest. Our field experience demonstrates that implementation is feasible and yields a

well-balanced sample.

Our implementation required a qualified field supervisor to run the treatment assignment.

Future trials could improve on our implementation by coding the algorithm into tablets or

smartphones. With such an app, enumerators in the field would then be able to allocate

treatments optimally in real time.
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Figure 1: Distribution of Differences in Means between Treatment and Control, at
Baseline and Follow-up
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