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Abstract  

The intergenerational reproduction of educational inequality across generations is a 

fundamental process of social stratification. A model of intergenerational reproduction 

should account for the roles of partnering differences by education, of educational 

matching in partnering, of partnered and unpartnered fertility differences by education, 

and parent-child educational correlations. Most models until now have been “one-sex”: 

they consider the characteristics only of one of the parents. Additionally, the model’s 

simulated outcomes have not been evaluated for bias nor presented with confidence-

interval estimates around the outcome measures. We address these limitations by 

specifying, estimating, simulating, and validating a two-sex model of intergenerational 

reproduction of education inside and outside marital unions. Our estimation builds in bias 

reduction and sampling-error minimization by using both medium- and large-scale 

surveys and combined-survey estimation of two of the component processes. The 

microsimulation model allows for annual birth, marriage, and divorce events and a one-

time intergenerational educational-transmission outcome. We find that women’s 

educational attainment, their number of births, and the distribution of births by parental 

marital status and maternal education, all match reasonably well with estimates from 

external data sources on the U.S. population, but only when using combined-survey 

estimation of the education-transmission process.  



1 
 

Estimation, Simulation, and Validation of a Two-sex Model of Intergenerational 

Reproduction of Education 

Introduction  
 

Models of intergenerational social reproduction, including of educational 

reproduction, have been estimated to provide a broader structure for describing the 

sources of intergenerational persistence of disadvantage, with respect to occupational 

class (Preston 1974), IQ (Preston and Campbell 1993), poverty (Musick and Mare 2004), 

and education (Mare 1997, Maralani 2013, Song and Mare 2017). Additional differentials 

by race have also been modeled (Preston 1974, Musick and Mare 2004, Maralani 2013). 

A crucial contribution of these models is that they go beyond measuring intergenerational 

correlations. In them, partnering and fertility processes are integral to generating the 

context in which intergenerational correlations “reproduce” inequality across generations. 

The methodological challenges of specification and estimation of an intergenerational 

reproduction model, however, are great, involving the chaining together of component-

process equations into a valid overall model. The purpose of the present study is to 

construct and evaluate an intergenerational reproduction model of education in ways that 

overcomes important limitations of models until now. 

Overview of the Problem and Our Solution 

A limitation of many intergenerational reproduction models is that, with few 

exceptions, they are “one-sex” models. This means that they consider the characteristics 

only of one of the parents, whereas both parents’ characteristics may be important (e.g., 

Beller 2009). In the case of models that examine contributions of both sexes, they may 
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use ad hoc rules to form pairings (e.g., Maralani 2013). Song and Mare (2017) specify 

and estimate a “two-sex” model of educational mobility, but their couple-formation 

process does not account for competition for partners across educational levels. A 

particular strength of their study, however, that we do not attempt to emulate in our 

model, is that it allows for indirect and direct influences of a grandparent generation on 

grandchildren.  

The model of the present study may best be viewed for how it builds on the Song 

and Mare (2017) study. Theirs makes the strongest claim to be a two-sex 

intergenerational reproduction model that we are currently aware of. Nevertheless it has 

four limitations, all of which we address in our study. First, they consider only marital 

fertility. Second, they do not model marital dissolution. Third, their two-sex model of 

couple formation accounts for the availability of individuals at each given education 

level, but not for the existence of individuals with different educational attainments who 

are potentially “competing” for those partners. Fourth, their simulated outcomes are 

neither evaluated for bias nor presented with estimates of the sampling error around the 

outcome measures.  

Song and Mare used Panel Study of Income Dynamics (PSID) data in which all 

three generations are observed. The generalization (or unbiasedness) of the population 

composition represented by the PSID is limited, however, by its construction to exclude 

immigrants in its “descendent” sampling structure. This weakens its representation 

especially of Hispanic Americans, whose, education, fertility, and family processes differ 

from non-Hispanic Americans’ (Landale and Oropesa 2007), who account for one in four 
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births in the U.S. (Martin et al 2021), and whose educational attainment at childbearing is 

the lowest of the main race/ethnic groups (Rendall et al 2018). Low levels of education 

among Mexican-born immigrants is a major factor producing this result (Rendall and 

Parker 2014). Another problem with using a single panel survey is sample size. The level 

of sampling error around the simulated outcome measures is potentially large when all 

component processes are estimated from a single panel survey. This is not estimated by 

Song and Mare, nor is it estimated in any of the other intergenerational simulated model 

studies cited above.  

In the present study, we specify, estimate, and simulate a two-sex model of 

intergenerational reproduction of U.S. educational attainment inside and outside 

marriage. Our model structure includes four processes to reproduce educational 

attainment across generations: (1) marriage; (2) divorce; (3) marital and non-marital 

fertility; and (4) intergenerational transmission of educational attainment. The latter three 

processes, as we model them, depend on the education of both parents for children born 

within marriage, but on the mother only, together with marital status at birth, for children 

born non-maritally. For the modeling of marriage, we account for the education of all 

unmarried women and men. For this model, we take advantage of recently-developed 

methods (Goyal et al 2020; Handcock et al 2021) that account for competition across 

men and women from different educational attainment levels, and that allow for the 

individual’s staying unmarried as a simultaneously-modeled outcome. We use multiple 

sources of smaller-scale, medium-scale, and large-scale survey data to estimate the 

parameters for each of the four processes. Specifically, we use the American Community 
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Survey (ACS), the Survey of Income and Program and Participation (SIPP), and the 

National Longitudinal Surveys (NLSY, 1979 and 1997 cohorts). Our estimation includes 

cross-survey multiple imputation methods (Rendall et al 2013), applied to the divorce 

and intergenerational education transmission processes. Sampling error across all data 

sources is incorporated into estimation of confidence intervals around simulation model 

outputs. 

Literature Review: Education in Two-sex Intergenerational Reproduction Processes 

We focus our literature review on methodological issues of model structure and 

estimation. We begin by reviewing the literature on the role of education in family-

demographic processes and on the need for a model to be structured as two-sex. To do 

this, we review work relevant to the roles of male and female education in the four 

component processes of the intergenerational reproduction of education. We then proceed 

to review methodological work relevant to the estimation of the component processes. 

These are notably a new two-sex marriage model and application of combined-survey 

methods to enable unbiased two-sex estimation of the divorce process and the 

intergenerational education transmission process with sufficiently large total sample 

sizes.  

Education and Fertility and Family processes 

The need for population models of the reproduction of education and educational 

inequality arises from the recognition that correlations between parents’ education and 

their children’s education is just one part of the reproduction of educational inequality 
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across generations. Education has long played a major role in partnership formation, 

partnership dissolution, and fertility. These processes also contribute to the reproduction 

of educational inequalities from one generation to the next. It is noteworthy here that 

Song and Mare’s (2017) educational reproduction model produces the result that, in the 

long run, college-educated children are no more likely to descend from college-educated 

parents and grandparents than they are to descend from high school educated parents and 

grandparents. Differential fertility by education, and educationally heterogamous 

marriages, offset positive parent-child educational correlations to produce this result in 

their model. However, the population generalizability of this result is difficult to assess 

because of their restricting the educational reproduction process to marital childbearing. 

For the last two decades, non-marital childbearing has accounted for about 40% of all 

U.S. births annually (Solomon-Fears 2014; Martin et al 2021). Less educated women in 

the U.S. have increasingly faced challenging prospects with respect to finding an 

educational marriage match (Lichter et al 2019), and their marriages are likely to dissolve 

more quickly (Schwartz and Han 2014). 

The importance of taking into account both parents’ education in the processes of 

educational reproduction has increased as women’s educational attainment and labor 

force participation have increased strongly in recent decades (DiPrete and Buchmann 

2006). First, education of both the woman and man are powerful factors to account for in 

pair-formation processes (Schwartz 2010, 2013). Second, higher educational attainment 

and educational homogamy reduce divorce likelihood (Schwartz and Han 2014; Raley 

and Sweeney 2020). Both marriage (Goldstein and Kenney 2001; Lundberg and Pollak 
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2015) and divorce (Martin 2006; Smock and Schwartz 2020) have become more unequal 

over time, favoring college-educated over less educated Americans (Cherlin 2010). 

Third, education of both the woman and man are powerful factors to account for also in 

fertility by the educational attainment of the woman (Yang and Morgan 2003; Nitsche 

and Bruckner 2020) and her partner (Joffe and Li 1994; Kravdal and Rindfuss 2008). 

Although the relationship between education and fertility has traditionally seen college-

educated women experience the highest likelihood of under-achieving with respect to 

their fertility targets (Quesnel-Vallee and Morgan 2003), Hazan and Zoabi (2014) 

described the fertility-by-education relationship for U.S. women as moving towards being 

increasingly U-shaped. Women who are highly educated have begun to have more 

children than women with a high school degree or some college levels of education, 

though still fewer than women with less than 12 years of education (see also Lundberg et 

al 2016). College-educated women in the U.S. have long been less likely to have a child 

outside of marriage, and less likely to have a child at a young age (McLanahan 2004). 

However, this educational divergence has become even greater over recent decades 

(Lundberg and Pollak 2015).  

New marriage modeling and combined-survey estimation methods 

For the modeling of marriage by education, we develop a two-sided discrete 

choice model for the revealed preferences (Goyal et al 2020). This model fully accounts 

for competition across men and women from different educational attainment levels, and 

allows for the individual’s staying single as a simultaneously modeled outcome. The 

conceptual and computational challenges of a fully two-sex modeling of pair formation 
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are very substantial. They involve a shift from a standard demographic modeling 

approach that focuses on rates attributed to individual propensities to rates that are 

generated by the interaction of individuals’ preferences and the availability of other 

individuals with matching preferences and characteristics. Previous work on this problem 

includes Schoen (1981), whose harmonic-mean solution is implemented by Song and 

Mare (2017), Pollak (1986, 1990), Pollard (1997), Choo and Siow (2006), and Logan et 

al (2008). 

Estimation of components of a two-sex intergenerational reproduction model 

requires data on both the woman and man as measured before a given process outcome. 

For divorce, this involves observation of both spouses’ educational attainment before a 

divorce event. For parent-child educational transmission in our model, this involves 

observation of both the mother’s and father’s educational attainment at the time of the 

child’s birth. For both processes, typically this requires panel data, or otherwise the kind 

of detailed marital history data usually collected only in specialized cross-sectional 

surveys. These types of data sources have relatively small sample sizes, reducing 

statistical efficiency. They are also possibly subject to attrition bias in the case of panel 

data (Fitzgerald et al 1998), or to retrospective recall error for marital histories (Kennedy 

and Ruggles 2014).  

Combined-survey estimation can address both those efficiency and bias problems 

(Ridder and Moffitt 2007). One form of combined-survey estimation is pooled cross-

survey multiple imputation (MI). The statistical theory of pooled cross-survey MI is 

developed in Gelman et al (1998) and Rendall et al (2013). When two surveys are 
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combined, the larger survey is expected to have advantages of both sample size and 

unbiasedness, and the smaller survey to have advantages of a fuller range of predictor 

variables. Applications in social demography include Baker et al (2015), Capps et al 

(2018), and Zvavitch et al (2020). Like within-survey MI for item non-response, cross-

survey MI accounts for increases in variance of the estimates induced by including 

imputed values. It has a major advantage over within-survey MI, however, of more easily 

satisfying the missing at random (MAR) assumption needed for unbiased MI, since the 

reason the value on the variable is missing is that the respondent was randomly sampled 

into the survey that does not include the question. 

Population model outcomes involving multiple equations are typically derived by 

microsimulation. This is the only practical solution in which the number of possible 

individual paths or trajectories is high (Moffitt and Rendall 1995, Thomson et al 2012). 

Microsimulation, because it operates similarly to resampling techniques used in statistics, 

also allows naturally for estimation of variability in the outcomes that is due to sampling 

error in the estimation of the model parameters (Wolf 2001). In particular, the 

microsimulation framework may be combined with bootstrap resampling.   

 

Method 

Overview of the Intergenerational Reproduction Model 

We refer to the entire process that we model as “the intergenerational 

reproduction of educational attainment.” Distributions of education in the grandparent 

generation (G1), parent generation (G2), and the child generation (G3) are analyzed as 
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occurring through four component processes of the intergenerational reproduction of 

education: Marriage, Divorce, Fertility, and Parent-child (“intergenerational”) 

Transmission of Education. Education e is a four-category variable: less than high school 

graduate; high school graduate; some college (including two-year, associate-degree 

graduate); and college graduate (four-year college).  

They become five processes when expressed over three generations: 

1. Intergenerational education transmission from G1 to G2;

2. Marriage of G2;

3. Divorce of G2;

4. Fertility of G2;

5. Intergenerational education transmission from G2 to G3.

The intergenerational reproduction model can actually be simulated across any 

number of generations. We limit the number of generations to three to allow us to 

validate the simulated model outcomes against observed data matching the G2 women, 

and against observed data matching their G3 children at the time of their birth.  

Our focal generation is the G2. We subscript the simulated individuals’ generation 

by 𝑔𝑔 = 1,2,3, respectively for their parents as the “grandparent” generation, for 

themselves as the “parent” generation, and for their children as the “child” generation. In 

our microsimulation, we allow for a population of 𝑖𝑖 =  1,2, … , 𝐼𝐼 G2 women and for 𝑗𝑗 =

 1,2, … , 𝐽𝐽 G2 men. As we describe in more detail following our description of the 

estimation of the four processes immediately below, we arbitrarily set 𝐼𝐼 and 𝐽𝐽 each to 
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6,000. This is a sufficient number to allow for reliable microsimulation of G1, G2, and 

G3 distributions of education. 

 

Estimation of the Four Component Processes 

To summarize, the four component processes in intergenerational reproduction 

model are Marriage, Divorce, Fertility, which occur to G2 only, and Intergenerational 

Education Transmission, which occurs to both G2 and G3. We use a single data source, 

the American Community Survey (ACS), to estimate the Marriage and Fertility 

equations. We use two data sources for the Divorce equation (ACS and Survey of Income 

and Program Participation, SIPP) and two data sources for the Intergenerational 

Education Transmission equations (NLSY79 YA and NLSY97). 

1. Marriage 

This component process is by far the most complicated of the four, involving 

simultaneously the preferences and availability, by education and age, of unmarried 

women and men. Each year, unmarried women and men in the model are either 

“matched” to each other and become married, or remain unmarried, in a process that 

accounts for both the preferences and availability of all unmarried individuals. We 

represent it using a two-sided logit model for the “marriage market” (Menzel 2015; 

Goyal et al 2020). In this model, individuals have preferences (represented by utilities) 

for all population members of the opposite sex and individuals maximize their utility over 

the set of all people of the opposite sex who are available. This means that no man and 

woman believes he or she can improve their matches by dissolving their current unions 
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and forming a new one with each other, a condition that is called stability in the game 

theory of marriage (Gale and Shapley 1962). Specifically, let 𝑈𝑈𝑖𝑖,𝑗𝑗 denote the utility 

female 𝑖𝑖 has for male 𝑗𝑗, and let 𝑉𝑉𝑗𝑗,𝑖𝑖 denote the corresponding utility male 𝑗𝑗 has for female 

𝑖𝑖. If these utilities are unique, we can obtain a set of strict rankings of possible partners 

for each male and each female. Additionally, we include a utility for no union, denoted 

by 𝑈𝑈𝑖𝑖,0 and 𝑉𝑉𝑗𝑗,0 for each female and male, respectively. 

We represent here a vector of observed characteristics, unobserved characteristics 

and unobserved utilities. Our analytic sample consists of adults 20-39 who are not 

currently married and those who, within the past year, have married a person of the 

opposite sex also between the ages of 20-39. 

The observed set of “status characteristics” 𝑊𝑊𝑖𝑖,𝑗𝑗 for pairing female 𝑖𝑖 and male 

𝑗𝑗 are age and education. The models for the utility gained by woman 𝑖𝑖 partnering with 

man 𝑗𝑗, and that for the utility gained by man 𝑗𝑗 partnering with woman 𝑖𝑖 are: 

           𝑈𝑈𝑖𝑖,𝑗𝑗 = 𝜃𝜃𝑤𝑤𝑇𝑇𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝛾𝛾𝑖𝑖,𝑗𝑗               𝑉𝑉𝑗𝑗,𝑖𝑖 = 𝜃𝜃𝑚𝑚𝑇𝑇 𝑍𝑍𝑗𝑗,𝑖𝑖 + 𝜖𝜖𝑗𝑗,𝑖𝑖                                              (1) 

where 𝑋𝑋𝑖𝑖,𝑗𝑗  is the vectorized form of the indicator matrix with (𝑤𝑤𝑖𝑖,𝑤𝑤𝑗𝑗)𝑡𝑡ℎ element 1 if the 

female has status characteristics 𝑤𝑤𝑖𝑖 and the male has status characteristics 𝑤𝑤𝑗𝑗, and zero 

otherwise. Similarly, 𝑍𝑍𝑗𝑗,𝑖𝑖  is the vectorized form of the indicator matrix with (𝑤𝑤𝑖𝑖,𝑤𝑤𝑗𝑗)𝑡𝑡ℎ for 

men. For example, with four education and four age categories, there are 16 status 

characteristic types for each sex. Here 𝜃𝜃𝑤𝑤 is a vector of female preference coefficients for 

the status characteristics pairings 𝑤𝑤𝑖𝑖,𝑗𝑗 and 𝜃𝜃𝑚𝑚 is the male preference coefficients for 

status characteristics pairings 𝑤𝑤𝑗𝑗,𝑖𝑖. As discussed in Goyal et al (2020), for this model only 
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𝛽𝛽 = 𝜃𝜃𝑤𝑤 + 𝜃𝜃𝑚𝑚 is identifiable and our parametrization will reflect this. The random 

components of the utility model account for unobserved information about individuals 

which may impact partnership choices. The random terms 𝛾𝛾𝑖𝑖,𝑗𝑗 and 𝜖𝜖𝑗𝑗,𝑖𝑖are assumed to be 

identically distributed draws from an extreme-value type-I (Gumbel) distribution (this 

can be relaxed, see Goyal et al 2020).  

We additionally define the random utility for the choice of remaining single as 

𝑈𝑈𝑖𝑖,0 = 0 + max
1≤𝑘𝑘≤�𝑁𝑁𝑚𝑚

𝛾𝛾𝑖𝑖0,𝑘𝑘                               𝑉𝑉𝑗𝑗,0 = 0 + max
1≤𝑘𝑘≤�𝑁𝑁𝑤𝑤

𝜖𝜖𝑗𝑗0,𝑘𝑘  

for females and males, respectively, where 𝑁𝑁𝑚𝑚 is the number of men in the population 

and 𝑁𝑁𝑤𝑤 is the number of women. This utility specification implies that the deterministic 

component of the utility for an individual choosing to be unpartnered is 0. If the 

nondeterministic components of the single utility functions are chosen to be standard 

Gumbel then the total nondeterministic component is Gumbel with locations �𝑁𝑁𝑚𝑚  and 

�𝑁𝑁𝑤𝑤 , respectively. This specification ensures that the share of singles in the market is 

asymptotically constant with respect to 𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑤𝑤 (Menzel, 2015, Assumption 2.2).  

We take advantage of the recent work of Goyal et al 2020, who developed the 

theoretically innovative framework of Menzel (2015) to enable the estimation of the 

preference parameters, 𝛽𝛽,  based on sample survey data on partnerships and population 

composition. We use data from the 2008 American Community Survey (ACS), obtained 

through IPUMS (Ruggles et al 2020). The ACS has a direct question asked of women in 

every year since 2008, “did you get married in the last year?” If the answer is “yes,” we 

use the opposite-sex spouse characteristics to assign the age and education of the husband 

she married. Additionally, the marital status of every adult member of the ACS 
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household is asked, providing data for the unmarried population of men and women and 

their ages and educational attainments. 

In the microsimulation model, we then use the above two-sided logit model with 

these estimated parameter values to simulate the matching of women and men to each 

other. In the model of equation (1), the status characteristics preference parameters drive 

the partnership process. To understand the matches produced, let 𝑂𝑂(𝑖𝑖) and 𝑂𝑂(𝑗𝑗) denote 

the opportunity sets for females and males, defined as: 

            𝑂𝑂𝑤𝑤(𝑖𝑖) = {𝑗𝑗:𝑈𝑈𝑗𝑗,𝑖𝑖 > 𝑈𝑈𝑗𝑗,fp(𝑗𝑗)} ∪ 0 𝑂𝑂𝑚𝑚(𝑗𝑗) = {𝑖𝑖:𝑉𝑉𝑖𝑖,𝑗𝑗 > 𝑉𝑉𝑖𝑖,mp(𝑖𝑖)} ∪ 0  

where mp(𝑖𝑖) and fp(𝑗𝑗) represent the indices of the male that female 𝑖𝑖 is in a marital 

union with, and the female that male 𝑗𝑗 is in a marital union with, respectively. In the case 

the individuals are not in a union, the values are 0. The opportunity set for female 𝑖𝑖 is the 

set of males who prefer female 𝑖𝑖 to the females with whom they are currently paired. 

Then stability requires: 

   𝑉𝑉𝑖𝑖,mp(𝑖𝑖) ≥ 𝑉𝑉𝑖𝑖,𝑗𝑗      ∀𝑗𝑗 ∈ 𝑂𝑂𝑤𝑤(𝑖𝑖) ∪ 0                             𝑈𝑈𝑗𝑗,fp(𝑗𝑗) ≥ 𝑈𝑈𝑗𝑗,𝑖𝑖     ∀𝑖𝑖 ∈ 𝑂𝑂𝑚𝑚(𝑗𝑗) ∪ 0               (2) 

These inequalities also allow non-unions to be individually rational. To simulate the 

marriages in each year, we generate dyad-specific random utilities from equation (1) for 

each female-male dyad in the population and then find a stable set of unions that satisfy 

(2) via the Gale-Shapley algorithm (Gale and Shapley 1962). The basic idea is to 

simulate a population of unions from the preference parameters and count the number of 

unions between (𝑖𝑖, 𝑗𝑗) pairs of each status characteristics. This general approach to 

inference, including uncertainty quantification and simulation is implemented in the 
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open-source software package rpm (see Goyal et al 2020; Handcock et al 2021). 

Estimates and standard errors for the model are provided in Appendix Table A1. 

 

2. Divorce 

The ACS has a direct question asked of women in every year since 2008, “did you 

get divorced in the last year?” We use data from the 2011 ACS for those women who are 

20-39 years old and who either are currently married and report no divorce in the last 12 

months, or who report a divorce in the last 12 months irrespective of their current marital 

status. Kennedy and Ruggles (2014) find the ACS to be an excellent source of divorce 

estimates. While very large sample sizes are available again in the ACS, the ACS data 

can be used alone only for one-sex estimation of the divorce probabilities. In the case of a 

divorce event, because the man is no longer in the ACS household after divorce, only the 

woman’s characteristics (age and education) are known. We rely on Survey of Income 

and Program Participation (SIPP, United States Census Bureau 2014) panel data to 

observe a divorce as it occurs between four-month-apart waves, accumulated over one-

year intervals. With its panel observation plan, the SIPP provides pre-divorce-exposure 

educational attainment and other information for both spouses, both in the case that a 

divorce occurs over the one-year interval and in the case that it does not. (The SIPP’s 

marital history, conducted in Wave 2 of each Panel, does not have partner information.) 

Our use of the SIPP panel waves to identify divorces follows Manning, Brown, and 

Stykes (2016), who used SIPP panel data to code both cohabitation dissolutions and 

marital dissolutions. The SIPP uses frequently-drawn new panels and thus provides a 
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more accurate picture of the representation of the U.S. population at any given time than 

do longer-running panels. We use the 2004 and 2008 Panels. The 2004 SIPP Panel 

respondents were interviewed every four months beginning in the Spring of 2004 and 

ending in the Fall of 2007. The 2008 SIPP Panel respondents were interviewed every four 

months beginning in the Fall of 2008 and ending in the Fall of 2013. We assemble the 

data in a couple-year format, meaning that every observation includes the identification 

of the man and woman in the couple, their marital status, and education. Details of the 

SIPP coding of divorce are provided in Appendix 2. To best match the years observed in 

the SIPP, we use the mid-point year of 2011 in the ACS data. This single year of ACS 

data provides approximately 10 times the number of person-years of exposure to divorce 

as in the two SIPP panels. The SIPP panel years accordingly produce fewer divorce 

events compared to the ACS, and have a priori unknown attrition biases. We show in 

Appendix Table A2a that the overall bias in the SIPP is downward, indicating that 

attrition is positively correlated with getting divorced. For these reasons, we used 

combined-survey estimation with the SIPP and ACS. Divorce events by the woman’s age 

and educational attainment are provided in the ACS, which is not subject to attrition bias, 

and divorce events by both the woman’s and the man’s ages and educational attainments 

are provided in the SIPP.  

Our divorce prediction equation is based on logistic regression of divorce on the 

educational characteristics of the women and man: 

 𝑃𝑃𝑃𝑃[𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷] = 𝑙𝑙𝐷𝐷𝑔𝑔𝑖𝑖𝑙𝑙{ 𝐷𝐷𝑓𝑓 , 𝐷𝐷𝑚𝑚 }     (3) 
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where 𝐷𝐷𝑓𝑓 , 𝐷𝐷𝑚𝑚 are the education of the woman and man, respectively. We combine data 

from the ACS with the 2004 and 2008 panels of the SIPP using pooled cross-survey 

multiple imputation (Rendall et al 2013). The SIPP has the ‘complete data’ and the ACS 

the ‘incomplete data’. Because only in the SIPP do we observe the man’s education for 

both intact and divorcing couples (‘complete data’), we multiply impute man's education 

to each ACS record before conducting pooled-survey estimation (with both the ACS and 

SIPP observations). Using both surveys in a combined-survey approach takes advantage 

of the sample size and unbiasedness of the ACS and the presence of both partners’ 

education in the SIPP. We estimate a binary logistic regression model with annual 

divorce versus no divorce as the dependent variable. We use the reported education level 

at survey for women only in the ACS, even though for couples that remain married, the 

education levels of both the woman and the man are available. Because the education for 

the partner of those divorcing in the ACS is not available, using the education of their 

partner in the case that they remained married in the year would violate the missing at 

random (MAR) assumption needed for unbiased multiple imputation. Notably, the man’s 

education data are missing on the dependent variable (for all cases of divorce=1).  

Because the pooled-survey estimation combines observations from two nationally 

representative surveys of approximately the same ages and years, we begin by assuming 

that they sample from a common social process except for a potential difference in levels 

of the outcome variable (divorce). We test the validity of this assumption by conducting 

diagnostics under a model-fitting framework, following Rendall et al (2013). Model-fit 

results are presented in Appendix Table A2b. We find model fit improvement only when 
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adding a “SIPP” intercept shift variable for divorce rate differences between the surveys, 

and not when adding a full set of covariate interactions with “SIPP” survey. Model fit 

improvement in the latter case would be evidence calling into question the 

appropriateness of a pooled-survey method. When using the combined-survey parameter 

estimates to generate predicted divorce probabilities in the microsimulation, we set the 

SIPP parameter to zero assuming the overall divorce rate will be unbiased in the ACS. 

 

3. Fertility  

We estimate the annual birth probability at ages 20 to 39 using data on fertility in 

marital unions, and in non-marital unions or outside a coresidential union, sampled in the 

ACS over the years 2001-2011 and 2013-2017. In 2012, data on fertility is suppressed in 

the ACS public use version for some geographic areas (i.e., 59 PUMAs within the states 

of Florida, Georgia, Kansas, Montana, North Carolina, Ohio and Texas) due to 

inconsistencies in data collection. We therefore omit data from 2012 to maintain national 

representativeness. We identify births using the ACS’s question asked of all 15 to 50 

year-old women, “in the past 12 months, has this person given birth to any children?” 

This includes births to women in marital unions as well as non-marital births to women in 

non-marital unions (cohabiting women) and to women in no coresidential union 

(unpartnered or single women). Age and educational attainment are available for all 

married and unmarried women and, if married, for her co-resident husband.  

Our fertility prediction equations are estimated separately for married (𝑃𝑃) and 

unmarried (𝑢𝑢) women. Again using 𝐷𝐷𝑓𝑓  and 𝐷𝐷𝑚𝑚 to represent the woman’s and the man’s 
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education for married births, and using 𝑎𝑎𝑓𝑓 to represent the woman’s age and 𝑝𝑝𝑓𝑓 to 

represent her parity, the marital and non-marital fertility equations are respectively: 

Pr[𝐵𝐵𝑖𝑖𝑃𝑃𝑙𝑙ℎ𝑟𝑟] = logit{ 𝐷𝐷𝑓𝑓 , 𝐷𝐷𝑚𝑚,𝑎𝑎𝑓𝑓 ,𝑝𝑝𝑓𝑓}      (4a) 

Pr[𝐵𝐵𝑖𝑖𝑃𝑃𝑙𝑙ℎ𝑢𝑢] = logit{𝐷𝐷𝑓𝑓 ,𝑎𝑎𝑓𝑓 ,𝑝𝑝𝑓𝑓}      (4b) 

Regression parameter estimates for the two equations are shown in Appendix Table A3. 

  

4. Intergenerational transmission of education 

The child “inherits” educational attainment from both the mother and father, or in 

the case the parents were not married at the child’s birth, from the mother only. Marital 

versus non-marital birth is implicitly a predictor of the child’s “inherited” educational 

attainment: In our two-parent intergenerational transmission (“inheritance”) modeling, 

the four-category educational attainment of the child generation is predicted in separate 

multinomial logistic (MNL) equations for maritally-born, 𝐷𝐷,𝑟𝑟 and non-maritally-born 𝐷𝐷,𝑢𝑢 

children, where the comma in the subscript is used to indicate that marital status 𝑃𝑃 or 𝑢𝑢 is 

a parental characteristic. We need to know the mother’s or both parents’ educational 

attainment at the time of the child’s birth to link to the previous microsimulation-model 

process of non-marital or marital fertility by the parent or parents’ educational 

attainments. Indexing again 𝑓𝑓=female, 𝑚𝑚=male, we denote mother’s education by 𝐷𝐷𝑓𝑓   and 

father’s education by 𝐷𝐷𝑚𝑚. Denoting by 𝑠𝑠 the gender of the child (male/female), the two 

parent-child educational transmission equations are: 

 Pr�𝐷𝐷,𝑟𝑟 = 𝐷𝐷� = MNL{𝐷𝐷𝑓𝑓,, 𝐷𝐷𝑚𝑚,, 𝑠𝑠}    (5a)   

 Pr�𝐷𝐷,𝑢𝑢 = 𝐷𝐷� = MNL{𝐷𝐷𝑓𝑓,, 𝑠𝑠}     (5b)  
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Estimation of these equations requires data including observation of mother’s 

marital status at birth, of both the mother’s and father’s educational attainment at the time 

of the child’s birth for a marital birth, or of the mother’s educational attainment only at 

the time of the child’s birth for a non-marital birth. Panel data are generally needed for 

this. Moreover, by the time the child’s educational attainment is observed, around age 24, 

they are often no longer living with either or both parents. Therefore, the panel data need 

to track the child individually into early adulthood. The NLSY79 meets all of these 

requirements, through its panel observation of the mother and co-resident father at the 

time of the birth, together with the linked NLSY79-Youth (YA) survey observation of the 

child as a young adult (Bureau of Labor Statistics 2019a). Sample sizes for observation of 

both the birth and the child’s educational attainment in the NLSY79, however, are 

relatively small. There is also considerable potential for attrition bias given that both the 

NLSY79 woman and then her child need to be followed until that child becomes a young 

adult (in the NLSY79 YA sample). Finally, the NLSY79 YA represents the children of 

NLSY79 women who were living in the U.S. in the late 1970s, thereby missing the 

coverage of children born to women who immigrated to the U.S. more recently. A second 

NLSY cohort, the NLSY97 (Bureau of Labor Statistics 2019b), is useful in addressing all 

these limitations. We are able to use it in combination with the NLSY79 to add 

approximately 5,000 children to our intergenerational-transmission estimation sample, as 

we now describe.  

The panel character of the NLSY97, like the NLSY79 YA, can be used to observe 

the outcome variable of the Intergenerational Transmission of Education process, being 
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the child’s own educational attainment as a young adult. The NLSY97 also provides the 

predictor variables of the child’s gender and the parents’ marital status when the child 

was born. The NLSY97, however, is missing observation of the parents’ educational 

attainments at the time of the child’s birth. It does have reports of the parents’ educational 

attainments at the time of the child’s adolescence (in the initial survey year 1997), 

including in cases where one of the parents is not living in the household but is the 

biological father or biological mother of the child. We use these parental educational 

attainments at the time of the child’s adolescence to impute parental educational 

attainments at the time of the child’s birth. To do this, we combine the NLSY79 and 

NLSY97 in a cross-survey multiple imputation (MI) procedure (see Appendix 4). 

Parental educational attainments at the time of the child’s adolescence serve as 

“auxiliary” variables (Schafer 2003) in the cross-survey MI, not used in the analysis 

equations (5a) and (5b), but used in imputing to the NLSY97 child the mother’s 

educational attainment at the time of the child’s birth and, if a marital birth, also the 

father’s educational attainment at the time of the child’s birth. For the multiple 

imputation, we first divide the two surveys’ samples into marital and non-marital births, 

as we do in the Intergenerational Education Transmission equations (5a) and (5b). 

Marital status at the child’s birth is coded in the NLSY97 from the mother’s martial 

history provided in the 1997 year. Pooled-survey (NLSY79+NLSY97) estimation with 

multiply-imputed parental educational attainment at the time of the child’s birth for the 

NLSY97 cases is used to estimate equations (5a) and (5b) (see Appendix Table A4c for 

regression estimates of the NLSY79-only and pooled NLSY79+NLSY97 models). 
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Microsimulation  

As noted above, the microsimulation model’s five processes are conducted over 

three (G1, G2, G3) generations: Intergenerational Education Transmission from G1 to 

G2; Marriage of G2; Divorce of G2; Fertility of G2; and Intergenerational Education 

Transmission from G2 to G3. These processes are simulated to occur in five 20-year 

periods that we call ‘eras.’ To build a simulated “analysis” population of (G2) 20-39 year 

olds, in each year of eras 1, 2, and 3, we simulate 300 G2 individuals (150 women; 150 

men) who enter the model at age 0 in each simulation year (see Appendix Figure A1). At 

ages 20 to 39, the 6,000 women born in eras 1 or 2 marry, divorce, and give birth to G3 

children. These family-demographic events, including the G3 births, occur in eras 2, 3, 

and 4. The G3 children’s own education at age 20 is assigned in eras 3, 4, and 5.   

In the year that the G2 women and men enter the model, they are first assigned to 

be a marital or non-marital birth, with a probability estimated from the NLSY79 YA 

sample that includes their NLSY79 parental marital status, as measured in the survey 

interview after the birth. Next, for a marital birth, the educational attainments of G1 

mother and father are assigned and, for a non-marital birth, the educational attainment of 

the G1 mother is assigned. The NLSY79 YA sample is again used to estimate these 

distributions of parent education for marital and non-marital births of G2s.  

Era 2 (years 21-40 of the model) represents the first era in which family formation 

processes take place. In the year that a G2 individual who entered the model in era 1 

reaches age 20, they are assigned their educational attainment. This value stays constant 
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throughout their reproductive life. The Intergenerational Education Transmission 

equations (5a) and (5b) are used to assign the G2’s educational attainment 

probabilistically as a function of G1 parent marital status, G1 education, and G2 gender 

(see Appendix 4). Each year exposes G2 cohort members between the ages of 20 and 39 

to marriage, fertility and divorce processes, in that order. Marriage risk occurs to 

unmarried women and men. The possible outcomes include staying unmarried and, if 

marrying, any of four values of education for the new spouse. Using the Gale-Shapley 

algorithm to calculate stable matches (Gale and Shapley 1962; Goyal et al 2020), we 

generate the utility of marriage options as a function of available G2 men and G2 

women’s education and age (see Appendix Table A1 for parameter estimates) as well as a 

random utility component assigned to each individual at each period. Births (0,1) are 

assigned to G2 women differentially by marital status (see Appendix Table A3 for 

fertility regression parameter estimates). For unmarried G2 women, the probability of 

experiencing a birth is a function of age, education, and parity. For married G2 women, 

the probability of experiencing a birth is a function of her education and that of her 

married partner, single-year age, and parity. Finally, all married G2 couples, including 

those who married in the current year, are assigned a divorce value (0,1) which is a 

function of both partners’ education (see Appendix 2).   

In era 3 (years 41 to 60), in each year 300 G2 individuals who entered the model 

in era 2 are assigned at age 20 their educational attainment. These G2 individuals are 

again exposed to marriage, fertility, and divorce when they are between the ages of 20 

and 39. Analogously, in era 4 (years 61 to 80), those G2s born in era 3 are assigned at age 
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20 their educational attainment and are exposed to marriage, fertility, and divorce when 

they are between the ages of 20 and 39. However, G2s born in era 3 do not contribute to 

the analysis group of G2 women. They do contribute to the marriage market and, if 

marrying a G2 analysis-group woman, contribute as a father of a G3 child. No further G2 

individuals enter the model in era 4.  

In eras 2, 3, and 4, G3 children are born through the fertility processes 

experienced by the G2 women who are born in eras 1 and 2, and who live through their 

reproductive years 20-39 in eras 2, 3, and 4 (see again Appendix Figure A1). The G3 

children’s G2 parental characteristics are assigned deterministically from the G2 fertility 

outcomes. That is, a marital birth simulated for a G2 mother and father of educational 

attainments  𝐷𝐷𝑓𝑓  and 𝐷𝐷𝑚𝑚 results in a G3 child being born with mother’s education by 𝐷𝐷𝑓𝑓,𝐺𝐺2  

and father’s education by 𝐷𝐷𝑚𝑚,𝐺𝐺2; a non-marital birth simulated for a G2 mother of 

educational attainment  𝐷𝐷𝑓𝑓  results in a G3 child being born with mother’s education by 

𝐷𝐷𝑓𝑓,𝐺𝐺2  and no father’s education. The G3 child’s gender is assigned randomly assuming an 

equal sex-ratio. The G3 children’s own educational attainment is assigned at age 20 in 

eras 3, 4, and 5. In era 5 (years 81 to 100), the only event modeled is the assignment of 

educational attainment at age 20 to G3 children who are born in era 4.  

One note about the G2 cohorts born in era 1 versus era 2: only in era 2 are they 

born at a simulation-model time when there is already a full population of 20 to 39 year 

olds; for those born in era 1, the population is still accumulating individuals across those 

ages. This restricts the ages of the spouse pool, though it restricts it less and less with 

each successive year. This is not expected to be an issue for microsimulation-model 
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outcome bias in the present version of the model, as in none of the component-process 

equations is the man’s age a predictor variable, and the education of the man is fixed 

across ages 20-39. For our main results, however, we alternately calculated 

microsimulation outcomes for women born in era 2 only. We found no substantial 

differences for women born in era 2 only, compared those outcomes simulated for 

women born in both eras 1 and 2.   

Implicit in our model are several assumptions which deserve mention here. First, 

the value of educational attainment is assigned at age 20 and is assumed to be fixed after 

age 20. This value represents eventual completed education. It is estimated from data in 

which education is observed at approximately age 24 (see again Appendix 4), thus 

allowing for observation of educational attainment up to a completed college degree. In 

results not shown, we found evidence of some educational attainment increases in the 

observed (ACS) population after that age, but these increases in education after age 24 

will not be represented by our model. Second, our model constrains the processes of 

family formation (marriage, fertility, divorce) to occur only between ages 20-39. We 

show below that this age range reduces the sum of cohort fertility by a surprisingly small 

proportion. Third, individuals can experience only one of each event in a year (that is, in 

a given year a G2 member cannot get married or divorced multiple times; however, they 

can get married, have a birth, and subsequently get divorced within the same year). 

Fourth, our model is two-sex except for non-marital fertility which assumes only 

mothers’ characteristics to be relevant; and we do not model non-marital fertility for men. 
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Finally, no mortality is included in the model; all G2 who enter the model at age 0 exit 

the model at age 40. 

To represent sampling error in the data used in the component-process estimation, 

in our microsimulation estimates, we bootstrap the surveys used to estimate each process: 

the assignment of G1 marital status and education as parental characteristics for G2 

(NLSY79); the transmission of education from the G1 to the G2 and from the G2 to the 

G3 generations (NLSY97 + NLSY79); G2 marriage (ACS); G2 fertility (ACS); and G2 

divorce (ACS + SIPP). For parameters using a combined-survey estimate (educational-

transmission and divorce), the bootstrapping is stratified by survey and conducted prior to 

imputation to preserve the contribution of each survey to the overall estimate. 

Bootstrapping prior to imputation is consistent with past recommendations to avoid bias 

in estimates (Schomaker and Heumann 2018). We generate 1,000 bootstrapped 

parameters for each simulation process and proceed to run the microsimulation for 1,000 

iterations, each with a different set of bootstrapped parameters. For each model outcome, 

we present the median estimate across the 1,000 simulation runs and present 95% 

confidence intervals which are bounded at the 2.5 percentile of estimates and the 97.5 

percentile of estimates across simulation runs. 

We present results alternately in the form of the G2 (parent generation) women as 

the unit of analysis, and of the G3 children (both genders combined) born to G2 women 

and men as the unit of analysis. This follows the insights of Preston (1976) that parental 

and child perspectives are both complementary and sometimes very different from each 

other. We present these main results for G2 women because fertility is modeled as 
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occurring to women (even though their marital status and education of husband if 

married, and of potential husbands among those not married, are generated through two-

sex modeling), and because our external data for use in the model validation are primarily 

for women. We evaluate both efficiency and bias of the microsimulated outcomes. 

Although we use combined-survey estimation for two component processes, education 

transmission and divorce, we focus on evaluating gains to combined-survey estimation of 

the education-transmission process. The main outcomes we evaluate are distributions of 

educational attainment of the parent (G2) and child (G3) generations, and on the 

distribution of the births (producing G3 children) by their G2 parental marital status and 

maternal education. We also compare the G2 generation’s truncated (ages 20-39) total 

fertility rate (TFR) to the regular and truncated TFR in the population for the same 

period. To perform our model validation analyses, we use the ACS and birth registration 

(Vital Statistics) estimates from the 2000s and 2010s to best match to the periods of the 

G2 generation’s educational attainment and fertility, as we describe in the Results section 

below. Both of these external sources have limitations, which we also note where each is 

used below, and where it is possible to use both sources for our validation (notably the 

birth distributions by mother’s characteristics), we do so. Because both sources provide 

information primarily on the mother of children born, our validation is focused on G2 

women. For the G3 generation, however, we include children of both sexes combined. 

Their characteristics used in the validation are their parents’ marital status at birth and 

their mother’s education.   
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Results  

We first present the educational attainment of women in the (G2) Parent 

Generation and of both genders combined for the (G3) Child Generation (see Table 1). 

For the G2 generation, we are able to conduct a comparison of the simulated educational 

distribution to observed data, as the NLSY79-Youth and NLSY97 cohorts used in our 

estimation were born in the mid-late 1980s. The simulated G2s therefore correspond 

approximately to real cohorts who were born 24 years before 2010, for whom we have 

estimated educational attainment distributions from the ACS. We present the 2010 

observed distribution of 24 year old women, because this mirrors the age at which 

educational attainment is observed in the education-transmission NLSY estimation 

samples. 

  

[TABLE 1 ABOUT HERE]   

 

We expect to see a closer correspondence of the ACS to the NLSY79+NLSY97 

version of the microsimulation model estimates than to the NLSY79-only estimates for 

three reasons. First, the population representativeness of the NLSY97 cohort, sampled 

from the US population of 14-19 year olds in 1997, is expected to be better than that of 

the NLSY79-Youth cohort who were born to women sampled in 1979. The 1980s and 

1990s saw substantial immigration especially of the Hispanic population, who on average 

had substantially lower educational attainment than the US-born population (Rendall and 

Parker 2014). That is, immigration lowered the educational attainment distribution in the 
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US compared to what it would have been without those 1980s and 1990s immigration 

inflows, and we want our microsimulation model to capture that. Estimation that includes 

the NLSY97 cohort should help to do that whereas estimation with the parents and 

offspring of the NLSY79 cohort will not. Second, more cumulative attrition is expected 

the NLSY79-Youth cohort, as both the NLSY79 women and the offspring NLSY79 

youth may have attrited, whereas only the NLSY97 youth themselves are potential 

attritors. Their parents’ characteristics are instead obtained from current and retrospective 

reporting in the initial 1997 wave. Third, sampling error for the combined-sample 

estimation will be lower than for either sample alone. Additionally, sampling error will 

be greater in the single-survey NLSY79 estimates because it has a smaller sample (of 

NLSY79 Youth) compared to the NSLY97 cohort sample size. For the G3 child 

generation’s educational attainment distribution, we have no data to use to evaluate bias 

(the G3 generation will only complete their education in the 2030s and 2040s), but we are 

able to compare CIs of microsimulation model outcomes between the combined-survey 

estimation and single-survey estimation versions of the education-transmission process. 

 

Education Distribution and Fertility of the Simulated Parent Generation (G2) Women, 

and Education Distribution of the Simulated Child Generation (G2) 

As expected, the NLSY79+NLSY97 version of the microsimulation model 

estimates are generally closer to the observed distribution of 24 year old women’s 

education in 2010 than are the NLSY79-only version estimates. We see no statistically-

significant differences between observed and simulated G2 education distributions for the 
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NLSY79+NLSY97 estimates for those with Less than High School Graduate (7.6% 

versus 8.5% observed), High School Graduates (30.7% versus 29.7% observed), Some 

College (32.2% versus 30.1% observed), and College Graduate (29.5% versus 31.5% 

observed) educational attainments. The NLSY79-only estimates, on the other hand, are 

substantially and statistically-significantly lower than the observed High School 

Graduates (21.1% versus 29.7% observed) and substantially higher than the observed 

Some College (37.7% versus 30.1% observed). With 33.8% College Graduates, added to 

the 36.2% Some College, the NLSY79-only estimates produce a G2 simulated 

distribution of 70.0% women with any college education. This is substantially higher than 

both the 61.6% observed, and the 61.7% that is simulated from the NLSY79+NLSY97 

estimation.   

To evaluate the efficiency gains of combined-survey estimation over single-

survey estimation of education-transmission for the microsimulated G2 women’s 

educational attainment, we compare 95% confidence intervals (CIs) between the 

NLSY79 and NLSY79+NLSY97 education-transmission estimation versions of the 

model (see again Table 1). We describe first the differences in CI widths in the 

educational distribution of the generation G2 women. They are generally narrower for the 

NLSY79+NLSY97 estimation version, but surprisingly not a lot narrower. The 

differences in CIs are largest at higher education attainment levels. In particular, for 

College graduate G2 women, the NLSY79+NLSY97 estimation 95% CI indicates that 

between 26.9% and 32.9% of all the G2 women are in this category (a 5.0 percentage-

point CI), whereas the NLSY79-only estimation 95% CI indicates that between 29.4% 
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and 37.8% of all the G2 women are in this category (a 7.4 percentage-point CI). For High 

School Graduate G2 women, the NLSY79+NLSY97 estimation 95% CI indicates that 

between 27.3% and 35.0% of all the G2 women are in this category (a 7.7 percentage-

point CI), whereas the NLSY79-only estimation 95% CI indicates that between 16.9% 

and 25.0% of all the G2 women are in this category (an 8.1 percentage-point CI width). 

Reasons for the lower-than-expected difference in CIs when also including the NLSY97 

data in a pooled-survey estimation of the education-transmission equations may include 

additional sample restrictions on the NLSY79-Youth sample when used in the cross-

survey multiple imputation (see Appendix 4). 

The simulated G2 generation women give birth to 10,252 Children 

(NLSY79+NLSY97 estimates), for a Cohort Total Fertility Rate of 1.71 (1.73 using the 

NLSY79 only). This is from fertility, however, only between ages 20 and 39. Given the 

G2 are born in the 1980s, their peak fertility ages 25-29 and 30-34 will have been 

approximately experienced in the decade of the 2010s. The US TFR (sum of age-specific 

fertility rates at ages 15 to 44) during the decade of the 2010s fell from 1.93 in 2010 to 

1.82 in 2016 and 1.71 in 2019, as presented in the National Center for Health Statistics 

(NCHS) series from birth registrations and Census Bureau population estimates (Martin 

et al 2018, 2021). Of the 2016 TFR of 1.82, 1.79 was contributed between ages 20-39, 

indicating that we lose only a small proportion of offspring by restricting our fertility age 

range to 20-39. It also suggests our cohort TFR of 1.73 (95% CI: 1.68-1.19) between ages 

20-39 is only about 5% lower than the 1.79 of 20-39 year old U.S. age-specific fertility 

rates as summed for 2016.  
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G2 Parental Characteristics of Newborn Children (G3)  

We present point estimates and confidence intervals in G3 microsimulation model 

outcomes, and compare again the NLSY79 and NLSY79+NLSY97 education-transition 

estimation versions of the model (see Table 2). The CIs are again generally narrower for 

the NLSY79+NLSY97 estimation version, but not very much narrower. For the fraction 

of G3 children born within marriage, the NLSY79+NLSY97 estimation 95% CI is from a 

lower limit of 60.2% to an upper limit of 64.2%, of all G3 children (a 4.0 percentage-

point CI width), whereas the NLSY79-only estimation 95% CI is from 63.7% to 68.7% (a 

5.0 percentage-point CI width).  

 

[TABLE 2 ABOUT HERE] 

 

These confidence intervals are needed for evaluation of bias in the 

microsimulation model outcomes. In this case of the fraction of G3 children born within 

marriage, they indicate that for the NLSY79+NLSY97 estimation the marital-birth 

fraction of 62.2%, the CI (95% CI: 60.2-64.2%) includes the fraction from the Vital 

Statistics (birth registrations) of 63.2%, but is lower than the 68.1% from the ACS (95% 

CI: 67.8-68.4%). For the NLSY79 estimation, the 66.4% marital-birth fraction the CI 

(95% CI: 63.7-68.7%) is above the 63.2% from the birth registrations, but overlaps with 

the 95% CI from the ACS (67.8-68.4% 95% CI). Both the birth registrations and the ACS 

have deficiencies in coverage. Some states, most notably California and Texas, are 
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missing from the birth registrations by marital status and maternal education (U.S. DHHS 

no date). For the ACS, we used the question on whether a woman gave birth in the last 12 

months. However, previous analyses (e.g., Rendall et al 2018) have shown that there are 

non-trivial numbers of cases in which newborns identified in an ACS household roster do 

not match up with reported births to ACS women in that household. We expect that non-

marital births may be overrepresented among those, and are accordingly cautious about 

the accuracy of the ACS-based statistics on proportions of births to married versus 

unmarried mothers that we generate for our validations. The birth registration system has 

generally been taken as the authoritative source of marital and non-marital birth fractions 

in the U.S. (e.g., Solomon-Fears 2014). On this basis, we conclude that the 

NLSY79+NLSY97 estimation of the education transmission process produces an 

unbiased estimate of the population marital-birth fraction for G3 children, whereas the 

NLSY79-only estimation of the education transmission process produces an upwardly-

biased estimate of the population marital-birth fraction.  

The confidence intervals are widest, unsurprisingly, for those births less numerous 

in the population, in particular non-marital births within each education group. For 

example, the fraction of G3 children born non-maritally whose mother has Less than 

High School Graduate women have a 95% CI of 12.8 percentage points (12.2-25.0%) in 

the NLSY79+NLSY97 estimation and of 14.3 percentage points (12.7-27.0%) in the 

NLSY79-only estimation. For G3 born maritally, the confidence interval width for the 

proportion of their mothers who are College Graduates the 95% CI is 7.9 percentage 
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points (40.7-48.5%) in the NLSY79+NLSY97 estimation and is 11.1 percentage points 

(46.5-56.6%) in the NLSY79-only estimation.  

These CIs are again needed for evaluation of bias in the microsimulation model 

outcomes. Differences are unfortunately again seen between the birth registrations (Vital 

Statistics) and ACS benchmarks. The fraction of College Graduate mothers among G3 

children born within marriage, however, exhibits little difference between the birth 

registration (44.7%) and ACS (43.3%) benchmarks. Here, the NLSY79+NLSY97 

estimation version of the microsimulation model matches the estimates from the birth 

registrations of 44.7%, and overlaps with the 95% CI from the ACS (95% CI: 43.0-

43.6%). For the NLSY79 estimation, however, the microsimulated 95% CI of 46.5-

56.6% (point estimate of 51.5%), lies above the estimates from both the birth 

registrations and ACS, implying upward bias. This is offset by a downward bias in the 

NLSY79 version’s proportion of High School Graduates mothers among marital births, 

with 13.7% (95% CI: 10.5-16.8%) compared to the birth registration system’s 17.8% and 

the ACS’s 24.2% (95% CI: 23.9-24.4%). The NLSY79+NLSY97 version fraction 23.4% 

(95% CI: 20.0-27.0%) matches the ACS estimate, but is above the birth registration 

system’s 17.8%. 

For the education distribution of mothers of non-maritally-born G3 children, even 

though the CIs are wide for the NLSY79 estimation version, those point estimates match 

better to the birth registration distribution than to the NLSY79+NLSY97 estimation 

version. The opposite is the case when comparing against the ACS non-marital births 

maternal-education distribution, where the NLSY79+NLSY97 estimation version is 



34 
 

closer and with all CIs overlapping between the ACS and the NLSY79+NLSY97 

estimates. The biggest G3 children’s difference between the NLSY79 and 

NLSY79+NLSY97 estimation distributions, and also between the ACS and birth 

registration distributions, is with respect to the High School Graduate proportion of 

mothers for non-marital births. The NLSY79+NLSY97 estimates are more than 10 

percentage points greater than the NLSY79 estimates. The latter (36.6%, 95% CI: 30.0-

42.8%) matches well to the birth registration 36.6% but is 8 percentage points lower than 

the ACS 44.4% (95% CI: 44.0-44.9%) educational attainment distributions. The former, 

at 47.4% High School Graduates (95% CI: 41.7-53.2%), is close to the ACS estimate but 

11 percentage points above the birth registration statistic. In summary, the maternal 

educational distribution of the G3 generation born outside marriage is not clearly better 

represented by either the NLSY79 version or the NLSY79+NLSY97 version of the 

microsimulation model, and part of this lack of clarity lies in conflicting statistics from 

the birth registration versus ACS data sources.  

 

Summary and Conclusions 
 

We find in evaluating our intergenerational reproduction model outcomes that, 

first, our simulation reproduces reasonably well the observed education distribution of 

women in the G2 (parent) generation. The observed education distribution of G2 women, 

however, is only reproduced well when using the combined-survey estimation of the 

education-transmission process. Single-survey estimation of the education-transmission 

process results in too few High School Graduates and too many with Some College and 
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too many College Graduate parent-generation women. Confidence Intervals are also 

somewhat wider about the single-survey estimation version of the microsimulation 

outcomes than with combined-survey estimation, but not so wide as to explain the 

discrepancy in educational distributions between the single-survey microsimulation 

outcomes and those observed in the population. Second, we find that the completed 

fertility of G2 women matches well to the corresponding period TFRs in the observed 

U.S. population.  

Third, distributions of the child (G3) generation’s fractions born non-maritally, 

both overall and by mother’s education, are reproduced reasonably well by our 

microsimulation model, both when using the combined-survey estimation and single-

survey estimation of the education transmission process. The match is somewhat better 

using the combined-survey estimation for the fractions born inside and outside marriage, 

and for the maternal education distribution for marital births, and there are some 

discrepancies in reproducing the educational attainment distribution of mothers in the 

case of non-marital births. Overall, compared to combined-survey estimation of the 

educational-transmission process, single-survey estimation produces more G3 outcomes 

that exhibit bias relative to external sources on the marital status and maternal education 

distributions. Single-survey estimation also produces confidence Intervals that are 

somewhat wider about the G3 children’s estimated parental marital status and maternal 

education outcomes. Our using combined-survey methods for the education-transmission 

equation therefore is shown to have increased statistical efficiency and reduced bias also 

for the parental characteristics of the child generation. 
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The main overall conclusion from our study is that by using a combination of 

medium- and large-scale survey data sources with a model that allows for annual birth, 

marriage, and divorce event simulation and a one-time assignment of educational 

attainment as an intergenerational-transmission process, the U.S. population’s 

educational attainment and births by marital status and maternal education are reproduced 

in a microsimulation model with a relatively simple structure. Given that no previous 

intergenerational reproduction model has attempted to evaluate bias against external 

sources, and given that no previous intergenerational reproduction model has generated 

confidence intervals or other measures of statistical uncertainty about their estimates, the 

present study’s results represent an encouraging advance in this literature. 

The reasonable match of our model outcome distributions to external data 

sources, however, is achieved only with advances in component-process estimation 

methodologies. Two-sex estimation of marriage is achieved with a new model that allows 

appropriately for competition across educational categories for both genders (Menzel 

2015; Goyal et al 2020). For two of the four component processes, moreover, estimation 

was performed by the application of pooled cross-survey multiple imputation (Gelman et 

al 1998; Rendall et al 2013). The two-sex estimation of divorce by education was only 

feasible without sizeable downward bias in predicted divorce probabilities by pooling an 

overall downwardly-biased data source (the SIPP), that nevertheless observes education 

of both spouses in the year before exposure to divorce, with an overall unbiased data 

source (the ACS) that observes education of only the wife in the year before exposure to 

divorce. The intergenerational transmission of educational attainment was estimated by 
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pooling two NLSY cohorts to achieve both larger sample sizes and a sample sufficiently 

representative of the current U.S. population. This pooled-survey estimation added a 

more recently-sampled cohort (the NLSY97) to a survey that sampled from a cohort 

observed in the 1970s, along with the children of this cohort (the NLSY79). We found 

substantially better matches to current, cross-sectionally observed population outcomes 

when moving beyond the 1970s-sampled NLSY79 data source alone. This suggests to us 

that Song and Mare’s (2017) use of a 1960s-sampled data source (the PSID) will have 

resulted in even more drift from the contemporary U.S. population in its most recent 

(grandchild) generation’s educational outcomes. This raises an inherent trade-off in 

models like Song and Mare’s that aim to incorporate direct as well as indirect 

intergenerational effects across not two but three or more generations (Anderson et al 

2018). Models like ours instead implicitly or explicitly impose a first-order Markovian 

assumption that the effects across generations will all occur through contiguous-

generation processes. This can be restated as assuming that all effects across a 

grandparent generation to a grandchild generation will occur through the intermediate, 

parent generation. We see no practical way to achieve contemporary population 

representativeness in an intergenerational reproduction model during a time of substantial 

immigration (or emigration) without making this first-order Markov process assumption.  

A related important finding to highlight is that errors in the estimation of one 

process carry over to generate corresponding errors in outcomes produced by another 

process in the microsimulation model. In the present case, the upward bias in estimation 

of the educational-transmission process noted in evaluating the G2 women’s education 
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distributions carried over to upward bias in the maternal education distribution of the G3 

children. This upward bias will be produced through both indirect and direct paths. 

Indirectly, the G2’s upwardly biased education distribution is expected to result in more 

marriage, less divorce, and lower rates of non-marital fertility (Lundberg et al 2016; 

Schwartz and Han 2014). Directly, the G2’s upwardly biased education distribution will 

simply increase the number of more highly educated women at risk of giving birth to G3 

children. In particular, using the NLSY79-only version of the microsimulation model 

resulted in too many G3 children who were estimated to be born to women who went to 

college. Not only their G2 mother’s education, but also their own educational attainment 

will be correspondingly upwardly biased, given strongly positive intergenerational 

education correlations. We saw that the educational attainment projected in our 

simulation for the G3 children is substantially greater for the single-survey NLSY79 

version, with 13 percentage points more College Graduates (45.9%) and 13 percentage 

points fewer High School Graduates (18.2%), compared to the 33.1% College Graduate 

and 30.7% High School Graduate for the NLSY79+97 version of the simulation. The 

propagation of error across multiple generations therefore needs to be considered as a 

major issue for intergenerational reproduction models. This demonstrates again the value 

to the overall model of both evaluating bias against external data sources and of 

addressing these biases with strategies such as shown here in our use of combined-survey 

estimation with at least one recently-sampled data source.  
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Table 1   Education distributions as an adult simulated for parent generation (G2) women and their (G3) children, and observed for G2 women  

  Parent Generation (G2) Womena   Child Generation (G3) 
     Observed 

Education at 
age 24 

     

 Simulation  Simulation 

 NLSY79 only NLSY79+NLSY97 
ACS 2010 
womenb  NLSY79 only NLSY79+NLSY97 

Educational 
Attainment  

number  
(women) percent 

number 
(women) percent percent   

number 
(both sexes) percent 

number 
(both sexes) percent 

           
< High School 
Graduate           443  7.4          458  7.6 8.5  673 6.5 739 7.2 
[95% CI] [287-636] [4.8-10.6] [292-642] [4.9-10.7]  [8.1,8.9]  [493-887] [4.8-8.4] [615-885] [6.0-8.5] 

           
High School 
Graduate         1,268  21.1       1,866  31.1 29.7  

              
1,900  18.2          3,149  30.7 

[95% CI] [1016-1497] [16.9-25.0] [1639-2100] [27.3-35.0]  [29.1,30.4]  [1616-2170] [15.6-20.7] [2928-3375] [28.8-32.7] 
           

Some College        2,263  37.7       1,886  31.4 30.1  3,043 29.2          2,960  28.9 
[95% CI] [1965-2596] [32.8-43.3] [1606-2132] [26.8-35.5]  [29.5,30.9]  [2735-3387] [26.2-32.6] [2769-3156] [27.0-30.8] 

           
College 
Graduate        2,012  33.5       1,787  29.8 31.5  

              
4,788  45.9          3,395  33.1 

[95% CI] [1764-2267] [29.4-37.8] [1616-1971] [26.9-32.9]  [30.9.5,32.3]   [4287-5320]   [41.7-50.5]  [3120-3690] [30.5-35.8] 
           

Allc        5,986  99.8       5,997  99.9 99.8  
            
10,404  99.9        10,243  99.9 

           
Cohort Total Fertility Rate      1.73  1.71  
[95% CI]             [1.68-1.79]   [1.66-1.76]   
   
Notes:   

a. The Parent Generation (G2) women include those who had no children. 
b. American Community Survey are from IPUMS-ACS (Ruggles et al 2020). Estimates are weighted. 
c. Totals are summed from bootstrapped median values of each education category, and therefore do not necessarily add exactly to 6,000 G2 

women. Percentage distributions may not add to 100 due to rounding.   



48 
 

Table 2 (G2) Parental Marital Status and Maternal Education distributions of (G3) children  

 
 

American 
Community Survey 

2010-2019 Education 
of Mothers Aged 20-

39 Born Between 
1980-1990 a 

Vital 
Statistics 

2010-2018 
Education of 

Mothers Aged 
20-39 

Education of 
G2 Mothers, 

NLSY 79 
Simulation b 

Education of G2 
Mothers, NLSY 
79 + NLSY 97 
Simulation b, c 

All Births     
Less than High School Graduate 10.3 13.9 9.8 10.3 
[95% CI] [10.1-10.5]  [6.3-13.9] [6.6-14.1] 

     
High School Graduate  30.6 24.9 21.5 32.4 
[95% CI] [30.4-30.9]  [17.2-25.5] [28.4-36.7] 

     
Some College 26.5 30.1 31.1 26.2 
[95% CI] [26.2-26.7]  [26.6-36.5] [22.1-30.3] 

     
College Graduate 32.6 31.1 37.4 31.0 
[95% CI] [32.2-32.9]  [33.1-42.1] [28.0-34.2] 

     
Marital Births 68.1 63.2 66.1 62.2 
[95% CI] [67.8-68.4]  [63.7-68.7] [60.2-64.2] 

     
Less than High School Graduate 7.7 9.2 4.6 5.2 
[95% CI] [7.5-7.9]  [2.8-6.9] [3.1-7.6] 

     
High School Graduate  24.2 17.8 13.7 23.4 
[95% CI] [23.9-24.4]  [10.5-16.8] [20.0-27.0] 

     
Some College 24.8 28.4 30.1 26.9 
[95% CI] [24.5-25.1]  [25.6-35.4] [22.6-31.0] 

     
College Graduate 43.3 44.7 51.5 44.4 
[95% CI] [43.0-43.6]  [46.5-56.6] [40.7-48.6]      

Non-Marital Births 31.9 36.8 33.9 37.8 
[95% CI] [31.6-32.2]  [31.3-36.3] [35.8-39.8] 

     
Less than High School Graduate 16.0 22.1 19.9 18.6 
[95% CI] [15.6-16.4]  [12.7-27.0] [12.2-25.0] 

     
High School Graduate  44.4 37.1 36.6 47.4 
[95% CI] [44.0-44.9]  [30.0-42.8] [41.7-53.2] 

     
Some College 29.9 33.0 33.3 25.1 
[95% CI] [29.5-30.3]  [27.5-40.2] [20.7-30.0] 

     
College Graduate 9.7 7.7 10.0 8.9 
[95% CI] [9.4-9.9]   [8.0-12.5] [7.4-10.5]      

Notes:  
a. American Community Survey (ACS) data are from IPUMS-ACS (Ruggles et al 2020). Estimates are 

weighted. 
b. NLSY79: National Longitudinal Survey of Youth 1979 cohort (with Young Adult sample). 
c. NLSY97: National Longitudinal Survey of Youth 1997 Cohort. 



Appendix Table A1  Two-sided Logit Estimates of Annual Marriage 

Woman Education Woman Age Man Education Man Age Estimate Std. Error
Less than High School Under 25 Less than High School Under 25 -0.80 0.17
Less than High School 25-29 Less than High School Under 25 -1.90 0.34
Less than High School 30-34 Less than High School Under 25 -2.65 0.81
Less than High School 35+ Less than High School Under 25 -2.99 0.82
High School Under 25 Less than High School Under 25 -1.95 0.15
High School 25-29 Less than High School Under 25 -3.28 0.39
High School 30-34 Less than High School Under 25 -5.81 0.45
High School 35+ Less than High School Under 25 -5.24 0.55
Some College Under 25 Less than High School Under 25 -3.23 0.22
Some College 25-29 Less than High School Under 25 -3.42 0.54
Some College 30-34 Less than High School Under 25 -5.22 0.56
Some College 35+ Less than High School Under 25 -4.51 0.88
College Under 25 Less than High School Under 25 -4.57 0.67
College 25-29 Less than High School Under 25 -4.69 0.62
College 30-34 Less than High School Under 25 -6.00 0.00
College 35+ Less than High School Under 25 -6.00 0.00
Less than High School Under 25 Less than High School 25-29 -0.90 0.21
Less than High School 25-29 Less than High School 25-29 -0.79 0.21
Less than High School 30-34 Less than High School 25-29 -2.06 0.43
Less than High School 35+ Less than High School 25-29 -3.07 0.75
High School Under 25 Less than High School 25-29 -2.09 0.19
High School 25-29 Less than High School 25-29 -1.89 0.19
High School 30-34 Less than High School 25-29 -2.59 0.41
High School 35+ Less than High School 25-29 -4.07 0.60
Some College Under 25 Less than High School 25-29 -3.25 0.26
Some College 25-29 Less than High School 25-29 -2.52 0.35
Some College 30-34 Less than High School 25-29 -3.47 0.56
Some College 35+ Less than High School 25-29 -4.90 0.62
College Under 25 Less than High School 25-29 -3.75 0.56
College 25-29 Less than High School 25-29 -4.79 0.47
College 30-34 Less than High School 25-29 -5.49 0.53
College 35+ Less than High School 25-29 -6.00 0.00
Less than High School Under 25 Less than High School 30-34 -1.64 0.41
Less than High School 25-29 Less than High School 30-34 -0.51 0.22
Less than High School 30-34 Less than High School 30-34 -0.42 0.26
Less than High School 35+ Less than High School 30-34 -1.06 0.33
High School Under 25 Less than High School 30-34 -3.47 0.33
High School 25-29 Less than High School 30-34 -1.80 0.24
High School 30-34 Less than High School 30-34 -1.85 0.23
High School 35+ Less than High School 30-34 -3.24 0.61
Some College Under 25 Less than High School 30-34 -5.51 0.42
Some College 25-29 Less than High School 30-34 -2.03 0.28
Some College 30-34 Less than High School 30-34 -2.12 0.36
Some College 35+ Less than High School 30-34 -2.80 0.58
College Under 25 Less than High School 30-34 -3.84 0.77



College 25-29 Less than High School 30-34 -5.96 0.41
College 30-34 Less than High School 30-34 -3.23 0.71
College 35+ Less than High School 30-34 -3.50 0.98
Less than High School Under 25 Less than High School 35+ -2.50 0.52
Less than High School 25-29 Less than High School 35+ -1.67 0.41
Less than High School 30-34 Less than High School 35+ -0.85 0.27
Less than High School 35+ Less than High School 35+ -0.54 0.31
High School Under 25 Less than High School 35+ -5.87 0.42
High School 25-29 Less than High School 35+ -2.28 0.34
High School 30-34 Less than High School 35+ -1.80 0.29
High School 35+ Less than High School 35+ -1.89 0.28
Some College Under 25 Less than High School 35+ -6.00 0.00
Some College 25-29 Less than High School 35+ -2.84 0.38
Some College 30-34 Less than High School 35+ -2.38 0.45
Some College 35+ Less than High School 35+ -1.92 0.34
College Under 25 Less than High School 35+ -5.52 0.49
College 25-29 Less than High School 35+ -5.92 0.39
College 30-34 Less than High School 35+ -4.39 0.80
College 35+ Less than High School 35+ -3.22 0.99
Less than High School Under 25 High School Under 25 -1.93 0.17
Less than High School 25-29 High School Under 25 -3.96 0.46
Less than High School 30-34 High School Under 25 -3.38 0.59
Less than High School 35+ High School Under 25 -4.58 0.78
High School Under 25 High School Under 25 -1.51 0.06
High School 25-29 High School Under 25 -2.87 0.16
High School 30-34 High School Under 25 -3.60 0.30
High School 35+ High School Under 25 -5.25 0.43
Some College Under 25 High School Under 25 -2.31 0.08
Some College 25-29 High School Under 25 -2.91 0.17
Some College 30-34 High School Under 25 -4.16 0.35
Some College 35+ High School Under 25 -6.00 0.04
College Under 25 High School Under 25 -2.92 0.16
College 25-29 High School Under 25 -3.67 0.20
College 30-34 High School Under 25 -5.66 0.32
College 35+ High School Under 25 -5.33 0.56
Less than High School Under 25 High School 25-29 -2.21 0.25
Less than High School 25-29 High School 25-29 -2.00 0.22
Less than High School 30-34 High School 25-29 -3.37 0.44
Less than High School 35+ High School 25-29 -4.15 0.66
High School Under 25 High School 25-29 -1.33 0.07
High School 25-29 High School 25-29 -1.16 0.08
High School 30-34 High School 25-29 -2.16 0.16
High School 35+ High School 25-29 -4.12 0.32
Some College Under 25 High School 25-29 -2.23 0.09
Some College 25-29 High School 25-29 -1.37 0.08
Some College 30-34 High School 25-29 -2.21 0.17
Some College 35+ High School 25-29 -3.82 0.39
College Under 25 High School 25-29 -2.66 0.17
College 25-29 High School 25-29 -1.77 0.10



College 30-34 High School 25-29 -2.88 0.20
College 35+ High School 25-29 -4.13 0.43
Less than High School Under 25 High School 30-34 -2.44 0.36
Less than High School 25-29 High School 30-34 -1.49 0.27
Less than High School 30-34 High School 30-34 -1.81 0.27
Less than High School 35+ High School 30-34 -1.99 0.40
High School Under 25 High School 30-34 -2.70 0.17
High School 25-29 High School 30-34 -1.51 0.11
High School 30-34 High School 30-34 -0.93 0.11
High School 35+ High School 30-34 -2.37 0.20
Some College Under 25 High School 30-34 -3.53 0.20
Some College 25-29 High School 30-34 -1.33 0.11
Some College 30-34 High School 30-34 -1.21 0.14
Some College 35+ High School 30-34 -2.16 0.21
College Under 25 High School 30-34 -4.00 0.47
College 25-29 High School 30-34 -1.83 0.13
College 30-34 High School 30-34 -1.82 0.15
College 35+ High School 30-34 -2.58 0.28
Less than High School Under 25 High School 35+ -3.12 0.33
Less than High School 25-29 High School 35+ -3.04 0.47
Less than High School 30-34 High School 35+ -2.15 0.42
Less than High School 35+ High School 35+ -2.52 0.46
High School Under 25 High School 35+ -3.35 0.22
High School 25-29 High School 35+ -2.19 0.16
High School 30-34 High School 35+ -1.39 0.13
High School 35+ High School 35+ -1.34 0.13
Some College Under 25 High School 35+ -4.41 0.35
Some College 25-29 High School 35+ -2.52 0.20
Some College 30-34 High School 35+ -1.70 0.17
Some College 35+ High School 35+ -1.77 0.18
College Under 25 High School 35+ -5.93 0.40
College 25-29 High School 35+ -3.09 0.30
College 30-34 High School 35+ -1.84 0.17
College 35+ High School 35+ -1.97 0.20
Less than High School Under 25 Some College Under 25 -4.25 0.56
Less than High School 25-29 Some College Under 25 -5.16 0.62
Less than High School 30-34 Some College Under 25 -6.00 0.03
Less than High School 35+ Some College Under 25 -6.00 0.00
High School Under 25 Some College Under 25 -2.50 0.11
High School 25-29 Some College Under 25 -4.01 0.29
High School 30-34 Some College Under 25 -5.35 0.41
High School 35+ Some College Under 25 -6.00 0.02
Some College Under 25 Some College Under 25 -2.04 0.07
Some College 25-29 Some College Under 25 -3.17 0.20
Some College 30-34 Some College Under 25 -4.70 0.49
Some College 35+ Some College Under 25 -6.00 0.31
College Under 25 Some College Under 25 -2.26 0.12
College 25-29 Some College Under 25 -3.79 0.19
College 30-34 Some College Under 25 -5.13 0.49



College 35+ Some College Under 25 -5.84 0.32
Less than High School Under 25 Some College 25-29 -3.54 0.68
Less than High School 25-29 Some College 25-29 -2.52 0.31
Less than High School 30-34 Some College 25-29 -2.97 0.92
Less than High School 35+ Some College 25-29 -6.00 0.00
High School Under 25 Some College 25-29 -2.30 0.13
High School 25-29 Some College 25-29 -1.51 0.11
High School 30-34 Some College 25-29 -2.71 0.25
High School 35+ Some College 25-29 -3.23 0.41
Some College Under 25 Some College 25-29 -1.93 0.11
Some College 25-29 Some College 25-29 -0.60 0.08
Some College 30-34 Some College 25-29 -2.10 0.18
Some College 35+ Some College 25-29 -3.06 0.33
College Under 25 Some College 25-29 -1.48 0.12
College 25-29 Some College 25-29 -0.87 0.08
College 30-34 Some College 25-29 -2.18 0.19
College 35+ Some College 25-29 -3.52 0.38
Less than High School Under 25 Some College 30-34 -3.07 0.54
Less than High School 25-29 Some College 30-34 -2.55 0.73
Less than High School 30-34 Some College 30-34 -2.22 0.60
Less than High School 35+ Some College 30-34 -2.89 0.88
High School Under 25 Some College 30-34 -2.96 0.21
High School 25-29 Some College 30-34 -1.44 0.16
High School 30-34 Some College 30-34 -1.16 0.16
High School 35+ Some College 30-34 -2.90 0.35
Some College Under 25 Some College 30-34 -2.78 0.18
Some College 25-29 Some College 30-34 -0.59 0.10
Some College 30-34 Some College 30-34 -0.53 0.12
Some College 35+ Some College 30-34 -1.49 0.20
College Under 25 Some College 30-34 -3.24 0.40
College 25-29 Some College 30-34 -1.01 0.10
College 30-34 Some College 30-34 -0.56 0.11
College 35+ Some College 30-34 -2.04 0.24
Less than High School Under 25 Some College 35+ -3.45 0.77
Less than High School 25-29 Some College 35+ -3.83 0.88
Less than High School 30-34 Some College 35+ -2.47 0.72
Less than High School 35+ Some College 35+ -3.61 1.17
High School Under 25 Some College 35+ -3.76 0.46
High School 25-29 Some College 35+ -2.39 0.25
High School 30-34 Some College 35+ -1.71 0.21
High School 35+ Some College 35+ -1.77 0.20
Some College Under 25 Some College 35+ -3.47 0.35
Some College 25-29 Some College 35+ -1.50 0.17
Some College 30-34 Some College 35+ -1.09 0.16
Some College 35+ Some College 35+ -1.22 0.18
College Under 25 Some College 35+ -4.49 0.59
College 25-29 Some College 35+ -1.89 0.20
College 30-34 Some College 35+ -0.90 0.14
College 35+ Some College 35+ -1.23 0.17



Less than High School Under 25 College Under 25 -4.40 0.98
Less than High School 25-29 College Under 25 -6.00 0.00
Less than High School 30-34 College Under 25 -6.00 0.00
Less than High School 35+ College Under 25 -6.00 0.00
High School Under 25 College Under 25 -3.37 0.27
High School 25-29 College Under 25 -4.61 0.62
High School 30-34 College Under 25 -6.00 0.00
High School 35+ College Under 25 -6.00 0.00
Some College Under 25 College Under 25 -2.39 0.14
Some College 25-29 College Under 25 -4.20 0.46
Some College 30-34 College Under 25 -5.97 0.40
Some College 35+ College Under 25 -6.00 0.00
College Under 25 College Under 25 -0.15 0.07
College 25-29 College Under 25 -1.96 0.14
College 30-34 College Under 25 -6.00 0.39
College 35+ College Under 25 -5.17 0.65
Less than High School Under 25 College 25-29 -4.99 0.60
Less than High School 25-29 College 25-29 -4.44 0.63
Less than High School 30-34 College 25-29 -4.87 0.77
Less than High School 35+ College 25-29 -6.00 0.00
High School Under 25 College 25-29 -3.02 0.20
High School 25-29 College 25-29 -2.58 0.21
High School 30-34 College 25-29 -3.28 0.58
High School 35+ College 25-29 -5.60 0.43
Some College Under 25 College 25-29 -2.49 0.13
Some College 25-29 College 25-29 -1.41 0.11
Some College 30-34 College 25-29 -2.79 0.26
Some College 35+ College 25-29 -4.32 0.75
College Under 25 College 25-29 -0.60 0.07
College 25-29 College 25-29 0.43 0.04
College 30-34 College 25-29 -1.15 0.11
College 35+ College 25-29 -2.92 0.36
Less than High School Under 25 College 30-34 -4.08 0.88
Less than High School 25-29 College 30-34 -2.98 0.51
Less than High School 30-34 College 30-34 -2.79 0.97
Less than High School 35+ College 30-34 -3.62 1.32
High School Under 25 College 30-34 -3.80 0.43
High School 25-29 College 30-34 -2.56 0.20
High School 30-34 College 30-34 -2.09 0.25
High School 35+ College 30-34 -3.12 0.37
Some College Under 25 College 30-34 -3.41 0.25
Some College 25-29 College 30-34 -1.51 0.14
Some College 30-34 College 30-34 -1.05 0.15
Some College 35+ College 30-34 -2.42 0.33
College Under 25 College 30-34 -1.66 0.17
College 25-29 College 30-34 0.00 0.06
College 30-34 College 30-34 0.57 0.06
College 35+ College 30-34 -0.76 0.13
Less than High School Under 25 College 35+ -3.71 1.25



Less than High School 25-29 College 35+ -4.29 0.78
Less than High School 30-34 College 35+ -2.86 0.86
Less than High School 35+ College 35+ -4.49 0.93
High School Under 25 College 35+ -4.28 0.46
High School 25-29 College 35+ -2.97 0.30
High School 30-34 College 35+ -1.99 0.24
High School 35+ College 35+ -2.55 0.33
Some College Under 25 College 35+ -3.70 0.31
Some College 25-29 College 35+ -2.10 0.22
Some College 30-34 College 35+ -1.54 0.22
Some College 35+ College 35+ -1.59 0.20
College Under 25 College 35+ -3.68 0.51
College 25-29 College 35+ -1.20 0.12
College 30-34 College 35+ 0.10 0.09
College 35+ College 35+ -0.03 0.09

N

Source: American Community Survey 

382,079                       



Appendix 2 Divorce Estimation 

The Survey of Income and Program Participation (SIPP) 

Each SIPP panel covers approximately four years and respondents are interviewed every 

four months. To match the annual event structure of our microsimulation mode, we code 

an annual outcome variable for divorce versus no divorce in the SIPP. We use the 2004 

and 2008 SIPP Panels. The 2004 SIPP Panel respondents were interviewed every four 

months beginning in the Spring of 2004 and ending in the Fall of 2007. The 2008 SIPP 

Panel respondents were interviewed every four months beginning in the Fall of 2008 and 

ending in the Fall of 2013. Since respondents are interviewed every four months, three 

waves of a panel are equal to 12 months. In 2004 we use waves 1-10 (there are 12 

possible waves) and in 2008 we use waves 1-13 (there are 16 possible waves) which 

correspond to the years 2003-2007 and 2008-2012 to keep exact 12-month cycles to best 

match the annual structure of the ACS. 

 2004 SIPP Panel 
Wave 

1 2 3 4 5 6 7 8 9 10 
   

 
  2004-2005 2005-2006 2006-2007   

2008 SIPP Panel 
Wave 

1 2 3 4 5 6 7 8 9 10 11 12 13 

 
  2008-2009 2009-2010 2010-2011 2011-2012 

  

We observe the changes in relationship status between waves 1 and 4, 4 and 7, 7 and 10, 

and 10 and 13. At wave 1, our sample is restricted to only those who are married and a 



partner in the household. Therefore, we do not use any newcomers into the sample (i.e. 

people who move into an already sampled household). To identify a divorce, we start 

with the all married, spouse present sample of wave 1. The year (2004-2005 of the 2004 

Panel and 2008-2009 of the 2008 Panel) between wave 1 and wave 4 will be used as an 

example to explain how marital status and divorce events were determined annually. If a 

respondent A is married at wave 1 to their partner, person B, and married1 at wave 4 to 

the same person B, they were at risk of divorce between those waves but remained 

married. A couple would be identified as getting a divorce between wave 1 and 4 if in 

wave 4 their status is identified as “divorced”. 

                                                           
1 If the couple is separated or married, spouse absent or separated we still consider them 

to be married in waves 4, 7, 10, and 13. The couple has to explicitly identify themselves 

as divorced in order to be considered divorced that calendar year. This is to best match to 

the ACS which only asks about the strict status of “divorced”. 



Appendix Table A2a: Descriptives of those at Risk for Divorce Annually during 2004-2011 in the United States, ages 20-39 

SIPP ACS SIPP ACS SIPP ACS
Women's Education ** ** **
Less than High School Graduate 0.109 0.101 0.062 0.082 0.110 0.101
High School Graduate 0.197 0.306 0.267 0.382 0.196 0.303
Some College 0.346 0.276 0.425 0.325 0.345 0.275
College Graduate 0.347 0.318 0.240 0.212 0.349 0.321
Men's Education
Less than High School Graduate 0.130 0.108 0.130
High School Graduate 0.226 0.277 0.225
Some College 0.330 0.412 0.329
College Graduate 0.314 0.203 0.316
Divorce 0.013 0.028 **
Sample N 26,098 212,542 372 5,227 25,726 207,315

Notes: All proportions are weighted. Group differences from chi-squared (SIPP vs. ACS), ** p<0.01.
 

All Divorcing Remaining Married

Sources: Survey of Income and Program Participation (AIPP) 2004 and 2008 panels and the American Community Survey 
(ACS) 2011.



Appendix Table A2b:  Model Fit Statistics for Pooled Logistic Regressions of Divorce on Education

Pooled SIPP and ACS Model Fit statistics

no SIPP 
intercept or 

regressor 
interaction

SIPP 
intercept, no 

regressor 
interaction

SIPP 
intercept 

and 
regressor 

interaction
AIC 57,482.6    57,273.3     * 57,277.0   
BIC 57,524.2    57,325.2     * 57,360.0   

* best fitting model (lower = better fit)

Sources: Survey of Income and Program Participation (SIPP) 2004, 2008. American Community 
Survey (ACS) 2009-2011.



Appendix Table A2c: Logistic Regression of Divorce on Own and Spouse's Education in the United States, ages 20-39 2004-2011

Coefficient S.E. Coefficient S.E. Coefficient S.E.
Women's Education
Less than High School Graduate -0.103 0.250 0.201 ** 0.074 0.107 0.146
High School Graduate 0.683 ** 0.170 0.646 ** 0.045 0.435 ** 0.104
Some College 0.582 ** 0.151 0.583 ** 0.046 0.378 ** 0.086
Men's Education
Less than High School Graduate 0.140 0.234
High School Graduate 0.446 * 0.224
Some College 0.463 * 0.185
SIPP -0.728 ** 0.056
Constant -4.685 ** 0.119 -3.969 0.034 -4.142 ** 0.079
Sample N 26,098 212,542 238,640

Notes: Estimates are weighted. ** p<0.01 and * p<0.05.  ACS+SIPP estimates use cross-survey multiple imputation.

SIPP ACS ACS + SIPP

Sources: Survey of Income and Program Participation 2004 and 2008 panels and the American Community Survey 2011.



Appendix Table A3  Logit Regression Estimates of Annual Birth 

Woman's Education (Ref. Less than High School Graduate)
High School Graduate (HS) -0.41 (0.01) -0.26 (0.02)
Some College (SCO) -1.00 (0.01) -0.27 (0.03)
College Graduate (CO) -1.73 (0.02) -0.12 (0.05)
Parity (Ref. 0 Prior Births)
1 Prior Birth 0.74 (0.01) 0.35 (0.01)
2 Prior Births 0.51 (0.02) -0.58 (0.01)
3+ Prior Births 0.38 (0.02) -0.76 (0.01)
Woman's Age -0.06 (0.00) -0.07 (0.00)
Man's Education (Ref. Less than High School)
High School (HS) -0.21 (0.02)
Some College (SCO) -0.24 (0.04)
College (CO) -0.01 (0.06)
Interactions of Parent Education
Mother HS Father HS 0.12 (0.03)
Mother HS Father SCO 0.20 (0.05)
Mother HS Father CO 0.12 (0.07)
Mother SCO Father HS 0.12 (0.04)
Mother SCO Father SCO 0.24 (0.05)
Mother SCO Father CO 0.21 (0.07)
Mother CO Father HS 0.17 (0.05)
Mother CO Father SCO 0.26 (0.06)
Mother CO Father CO 0.22 (0.08)
Intercept -0.62 (0.03) 0.73 (0.02)
N 2,184,117 1,995,207
Notes:
Standard errors in parentheses
Source:
American Community Survey 2000-2011, 2013-2017

Non-Marital Birth Marital Birth
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Appendix 4 Educational Transmission  

Data  

Data for this study comes from U.S. men and women born in the early 1980s in 

the National Longitudinal Survey of Youth 1979 Young Adult Sample and 1997 Sample 

(NLSY79, NLSY97). These two cohort panel surveys have the major strength of 

collecting nationally representative longitudinal data for those cohorts, and having 

education information on both a parent and child generation.  

 Starting in 1979, the NLSY79 (Bureau of Labor Statistics 2019a) interviewed a 

nationally representative sample of 12,686 young men and women born in 1957 through 

1964. To best match the 1997 sample, we use the NLSY79 Young Adults survey, 

alternately described as the NLSY79 Youth. The youth sample includes children born to 

the female respondents of the NLSY79 and has been collected biennial since 1986.  

Starting in 1997, the NLSY97 (Bureau of Labor Statistics 2019b) interviewed a 

nationally representative sample of 8,984 individuals who were between ages 12 and 16. 

92.1% of eligible respondents completed the first round, 1997, interview. Black and/or 

Hispanic and Latino populations were oversampled. Respondents were interviewed 

annually until 2011 and biennially since. Approximately 83% of the 1997 sample was 

interviewed in 2011.  

Measures 

Education of child generation 

 Education is measured similarly in both the NLSY79 Young Adult sample and the 

NLSY97 sample. In the NLSY79 Young Adult, the respondents are interviewed 
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biennially, we take the maximum education completed at age 24-28. In the NLSY97, 

respondents' own education represents their education at age 24.  

Parent or Parents’ Education at the Child’s Adolescence and at Child’s Birth  

 The NLSY79 respondents record their education status every two years per the 

NLSY79 survey protocol. When the NLSY79 Young Adult is 14 years old, we record the 

age of their parents in the NLSY79 survey as the parents' education during the child's 

adolescence. In the NLSY97, the parental questionnaire administered in 1997 records the 

parents’ education at the time of interview, when the respondents themselves are 12-16 

years old. Mother’s and father’s education at the time of the child’s birth is recorded only 

in the NLSY79 sample. We use the educational attainment variable in the first survey 

year after the birth of the child.  

Marital Status at Birth of child generation 

 Using the birth date of the NLSY97 cohort member child and the start and end 

dates of marriages of their parents, we determine whether the birth of the NLSY97 cohort 

member was to a married or unmarried mother. The NLSY79 respondents record their 

marriage entry and dissolution as well as the birth of their child. If the birth of the 

NLSY79 Young Adult occurred during a current marriage of the NLSY79 cohort 

member, that birth was considered to be a marital birth. For the NLSY97 cohort 

members, in the initial, 1997 wave, a parent of the cohort member was asked to complete 

a parental questionnaire which includes a marital history.  

Imputation  
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Education of the parent at the time of the child’s birth is needed for the 

microsimulation model’s intergenerational-transmission equation, but is observed only in 

the NLSY79. Education of the mother at the time of the child’s birth is needed for non-

marital births. Education of the mother and the father at the time of the child’s birth is 

needed for marital births. Cross-survey multiple imputation is used to impute to every 

NLSY97 cohort member the education of the parent at the time of the child’s birth based 

on the education of the mother (non-marital birth) or the mother and father (marital 

birth). The imputation equations are estimated on the NLSY79 data, and coefficients 

from this equation used to multiply impute a value of parent education at the time of the 

child’s birth to each NLSY97 cohort member.  
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Appendix Table A4a: Descriptives of Women in the United States at age 24 born in 1980-1984. 

NLSY 79 NLSY 97
Marital Birth Proportion 0.80 0.78
Sample N 1,908 5,290

NLSY 79 NLSY 97 NLSY 79 NLSY 97 NLSY 79 NLSY 97
Female 0.47 0.49 0.49 0.49 0.47 0.49
Own Education ** ** **
< High School Graduate 0.04 0.06 0.17 0.19 0.06 0.09
High School Graduate 0.19 0.36 0.34 0.47 0.22 0.39
Some College 0.29 0.28 0.34 0.26 0.30 0.27
College Graduate 0.48 0.30 0.15 0.08 0.41 0.25
Dad's Education at Child's Adolescence **
< High School Graduate 0.08 0.14 - - - -
High School Graduate 0.38 0.35 - - - -
Some College 0.22 0.21 - - - -
College Graduate 0.31 0.30 - - - -
Mom's Education at Child's Adolescence ** ** **
< High School Graduate 0.03 0.11 0.17 0.33 0.05 0.16
High School Graduate 0.40 0.34 0.53 0.40 0.43 0.35
Some College 0.27 0.27 0.21 0.21 0.26 0.26
College Graduate 0.31 0.28 0.09 0.07 0.26 0.23
Household Composition at child's age 2 ** ** **
Bio mom+ Dad 0.73 0.91 0.25 0.12 0.64 0.74
Other 0.27 0.09 0.75 0.88 0.36 0.26
Dad Education at Birth
< High School Graduate 0.09 - - - - -
High School Graduate 0.41 - - - - -
Some College 0.21 - - - - -
College Graduate 0.29 - - - - -
Mom Education at Birth
< High School Graduate 0.05 - 0.20 - 0.08 -
High School Graduate 0.45 - 0.56 - 0.47 -
Some College 0.24 - 0.18 - 0.23 -
College Graduate 0.26 - 0.05 - 0.22 -
N 1,313 3,758 595 1,532 1,908 5,290
Notes: All proportions are weighted
Group differences from chi-squared (NLSY79 vs. NLSY97), ** p<0.01. 
Sources: National Longitudinal Survey of Youth 1979, 1997

Marital Birth Nonmarital Birth All



Pooled 
NLSY79 and  

NLSY97 Model 
Fit statistics

No 79 
intercept or 

regressor 
interaction

 79 intercept, no 
regressor 

interaction

 79 intercept and 
regressor 

interaction
AIC 5,152.3             5,130.3                        * 5,132.4                    
BIC 5,254.2             5,249.2                        * 5,336.3                    
AIC 11,399.8           11,218.2                      11,193.4                 *
BIC 11,576.2           11,414.2                      * 11,546.1                 

Notes: * best fitting model (lower= better fit)
Sources: National Longitudinal Survey of Youth 1979, 1997

Non-Marital Births

Martial Births

Appendix Table A4b.  Model Fit Statistics for Pooled Logistic Regressions of Own Education on 
Parental Education at Adolecense of Child



Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 
Intercept -0.43 0.55 0.54 0.11 0.61 0.38 0.41 0.15
Mother's Education at Birtha

High School Graduate 1.04 0.34 0.58 0.14 0.80 0.37 0.89 0.16
Some College 1.72 0.52 0.69 0.26 0.69 0.47 1.16 0.24
College Graduate 2.24 0.93 1.46 0.70 1.23 0.84 2.16 0.48
Fathers's Education at Birtha

High School Graduate 0.37 0.32 0.95 0.16
Some College 1.01 0.56 0.83 0.21
College Graduate 0.76 0.75 2.11 0.43
Own Gender Female 0.22 0.32 -0.07 0.12 -0.40 0.30 -0.02 0.13
Intercept -0.80 0.52 -0.28 0.13 0.68 0.38 0.24 0.16
Mother's Education at Birth
High School Graduate 0.99 0.34 1.03 0.16 0.69 0.37 1.26 0.17
Some College 2.44 0.48 1.66 0.26 1.13 0.46 1.80 0.25
College Graduate 2.34 0.90 2.70 0.71 1.45 0.82 2.89 0.48
Fathers's Education at Birth
High School Graduate 1.00 0.33 0.54 0.16
Some College 2.07 0.56 0.61 0.21
College Graduate 1.94 0.73 2.05 0.43
Own Gender Female 0.39 0.32 -0.21 0.13 -1.01 0.29 -0.38 0.14
Intercept -2.15 0.70 -1.91 0.25 -1.33 0.56 -0.62 0.20
Mother's Education at Birth
High School Graduate 1.70 0.49 1.75 0.28 2.09 0.53 2.12 0.22
Some College 3.19 0.60 2.59 0.33 2.92 0.60 3.16 0.28
College Graduate 2.17 1.04 3.60 0.77 4.02 0.89 5.04 0.49
Fathers's Education at Birth
High School Graduate 1.30 0.37 -0.02 0.17
Some College 2.62 0.58 0.33 0.22
College Graduate 3.50 0.74 2.20 0.43
Own Gender Female 0.24 0.40 -0.44 0.18 -1.04 0.30 -0.71 0.14
N 595 2,127 1,313 5,071
Notes: All results are weighted. 
NLSY79+97 estimates are from pooled cross-survey multiple imputation estimation.
a. Reference education category is Less Than High School Graduate.
Sources: National Longitudinal Survey of Youth 1979, 1997.

Appendix Table A4c.  Multinomial Logistic Regression of Own Education at age 24 on Mother's 
and Father's Education by Marital Status at Birth
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