BIGDATA: Collaborative Research: IA: Population Reproduction of Poverty at Birth from Surveys, Censuses, and Birth Registrations

UCLA

Michael S. Rendall, Principal Investigator, UMD; Mark Handcock, Co-Principal Investigator, UCLA;
Margaret Weden, Co-Principal Investigator, RAND

Goals of the Study

Domain Goal: collaboration between tatisficians and social demographers to generate new forms of causal inference social reproduction across generations in a population
BIGDATA Goals: develop, evaluate, and disseminate methods of estimation and simulation that combine a maximum amount of large- and medium-scale survey data with population-level census and administrative data on the same population

Utilities V, U of men i and women j depend on preferences α, β and status characteristics; we generate dyad-specific random utilities for each female-male dyad in the population

$$
\begin{gathered}
V_{i, j}=\beta^{T} W_{i, j}+\gamma_{i, j} \\
U_{j, i}=\alpha^{T} W_{j, i}+\varepsilon_{j, i}
\end{gathered}
$$

BIGDATA Challenge I: Complexity of Population Models of Social Reproduction Need to include both mother's and father's
characteristics in the modeling of intergenerational charracteristics in the modeling of intergeneration
inheritance
chardict of assortative mating on these characteristics.

Patterns of qssortative mating and reproduction by
various combinations of race, ethnicity country of various combinations of race, ethniciry, country
bitrhand educational attrinne nt in the u.S. has
expanded greatly over recent decades
Simple model structures and single data sources
are unable to model the increasing complexity of American society and its sorioeconomic disparities across racial, ethnic, immigrant and gender divisions

We then find a stable set of unions that satisfy for each female-male dyad in the population, the set of unions between woman $\mathrm{i}, \mathrm{mp}(\mathrm{i})$, and man j , $\mathrm{fp}(\mathrm{j})$, that satisfy for all opportunity sets $\mathrm{O}(\mathrm{i})$ and $\mathrm{O}(\mathrm{j})$ of utility-maximizing unions for individuals of the other sex:

$$
\begin{aligned}
& V_{i, m p(i)} \geq V_{i, j} \forall j \in O(i) \cup \varnothing \\
& U_{j, f p(j)} \geq U_{j, i} \forall i \in O(j) \cup \varnothing
\end{aligned}
$$

BIGDATA Challenge II: Need for Model Parameter Estimation and Model Validation that Combines Data Across Multiple Sources
Methods for combining data a cross multiple sources of very arge-scale, medium-scale, and smaller-scale populationrepresentative data* sources are essential for estimating the parameters of a sufficiently realistic model of intergenerational social reproduction
Combining survey data sources with different sampling designs, however, raises additional problems for which solutions have only begun to be developed**

Data Sources for Simulation Model Components 1) Poverty at birth

 mother-rather--child triad emerges through simulating steps 2 2]
fo 4)
2) Male and Female Educational Attainment given own poverty
status a b bith: PSID, NLSY7, SIPP
at
3) Assortative Union Formation and Dissolution given educational ACS, CPS, SIPP (also: PSID, NLSY79, NLSY97)
4) Couple and Unpartnered Women's Ferility given education of
both woman and any coresident partner NCHS, ACS, CPS, SIPP, PSID, and NLSY79

Preliminary Data for Model Estimation and Evaluation, SIPP 2001, 2004, 2008 Panels, married men ages 18-59, Own race/ethnicity by Wife's race/ethnicity					
Wife	Hispanic	Black	White	Asian	N (Unweighted)
Self: Hispanic	85.9	0.4	13.2	0.6	4,414
Black	2.5	87.8	8.5	1.2	2,870
White	2.4	0.4	96.1	1.2	28,273
Asian	1.3	0.5	6.7	91.4	1,631

BIGDATA Challenge II: The Need for Simulation to Model Outcomes Not Observable in a Single Data Source
There is no source of U.S.-population-representative data on whether a child was born into poverty as well as whether both that is, the poverty-at-birth circumstances of mother-fatherchild triads
It is possible to observe a random sample of mother-child dyads and of father-child dyads and then simulate mother ather-child triads if one understands consequences of patterns
We structure a simulation model to capture consequences of poverty-status at birth on educational attainment and thereby assortative mating and childbearing

First subproject: Assortative Union Formation

 in a "Two-Sex" ModeThe single most challenging model component is to
generate partner characteristics q of Table 1 .
Partner characteristics depend on the "two-sex" process of forming marital or cohabiting unions, or unions th produce children outside of a coresidential union. "Two sex" refers to taking into account both male and
female preferences and the distribution of available opposite-sexwomen and men
We use the model of Logan, Hoff and Newton (2008)* mplemented in the software package RPM (Admiraa and Handcock 2008)*

Preliminary Data for Model Estimation and
Evaluation, SIPP 2001, 2004, 2008 Panels,
cohabiting men ages 18-59

Wife: Hispanic Black	White	Asian	N (Unweighted)			
Self: Hispanic	73.6	1.5	22.8	2.1	564	
Black	4.5	78.7	16.0	0.8	479	
White	2.9	0.6	94.9	1.7	2,762	
Asian	9.9	0.0	34.8	55.3	55	

This research is supported by grant NSF IIS-1 546259. We thank
Lucia Lykke for research assistance

