From education to health to criminal justice, government regulation and policy decisions have important effects on social and individual experiences. New data science tools applied to data created by government agencies have the potential to enhance these meaningful decisions. However, certain institutional barriers limit the realization of this potential. First, we need to provide systematic training of government employees in data analytics. Second we need a careful rethinking of the rules and technical systems that protect data in order to expand access to linked individual-level data across agencies and jurisdictions, while maintaining privacy. Here, we describe a program that has been run for the last three years by the University of Maryland, New York University, and the University of Chicago, with partners such as Ohio State University, Indiana University/Purdue University, Indianapolis, and the University of Missouri. The program—which trains government employees on how to perform applied data analysis with confidential individual-level data generated through administrative processes, and extensive project-focused work—provides both online and onsite training components. Training takes place in a secure environment. The aim is to help agencies tackle important policy problems by using modern computational and data analysis methods and tools. We have found that this program accelerates the technical and analytical development of public sector employees. As such, it demonstrates the potential value of working with individual-level data across agency and jurisdictional lines. We plan to build on this initial success by creating a larger community of academic institutions, government agencies, and foundations that can work together to increase the capacity of governments to make more efficient and effective decisions.
Located in
MPRC People
/
Frauke Kreuter, Ph.D.
/
Frauke Kreuter Publications
Greywater is increasingly treated and reused for agricultural irrigation in off-grid communities in the Middle East and other water scarce regions of the world. However, there is a dearth of data regarding levels of antibiotics and herbicides in off-grid greywater treatment systems. To address this knowledge gap, we evaluated levels of these contaminants in two types of greywater treatment systems on four farms in the West Bank, Palestinian Territories. Samples of household greywater (influent, n = 23), treated greywater effluent intended for agricultural irrigation (n = 23) and pumped groundwater held in irrigation water ponds (n = 12) were collected from October 2017 to June 2018. Samples were analyzed using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) for the following antibiotics and herbicides: alachlor, ampicillin, atrazine, azithromycin, ciprofloxacin, erythromycin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, tetracycline, triflualin, and vancomycin. All tested antibiotics and herbicides were detected in greywater influent samples at concentrations ranging from 1.3 to 1592.9 ng/L and 3.1–22.4 ng/L, respectively. When comparing influent to effluent concentrations, removal was observed for azithromycin, alachlor, linezolid, oxacillin, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, and vancomycin. Removal was not observed for atrazine, ciprofloxacin, erythromycin, oxolinic acid, tetracycline, and trifluralin. Pond water also contained the majority of tested contaminants, but at generally lower concentrations. To our knowledge, this is the first description of an extensive array of antibiotics and herbicides detected in household greywater from off-grid treatment systems.
Located in
MPRC People
/
Amir Sapkota, Ph.D.
/
Amir Sapkota Publications